• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DUAL BAND HYPERSPECTRAL IMAGING SPECTROMETER

Hartke, John January 2005 (has links)
A temporally and spatially non-scanning imaging spectrometer covering two separate spectral bands in the visible region using computed tomographic imaging techniques is described. The computed tomographic techniques allow for the construction of a three-dimensional hyperspectral data cube (x, y, λ) from the two-dimensional input in a single frame time. A computer generated holographic dispersive grating is used to disperse the incoming light into several diffraction orders on a focal plane composed of interwoven pixels independently sensitive to the two bands of interest. Separating the input of the two spectral pixel types gives co-registered output between the two bands and overcomes the limitation of overlapping orders. The proof of concept in the visible is presented using a commercially available camera.The lessons learned from the visible system are applied to a dual infrared band imaging spectrometer. Utilizing recent developments in dual band infrared focal planes a dual band imaging spectrometer is designed covering portions of the MWIR and LWIR atmospheric transmission windows. The system design includes the evaluation of recent developments in dual band infrared focal planes, the design and evaluation of the computer generated holographic disperser, and the optical elements in the system.
2

New techniques of multiple integral field spectroscopy

Ren, Deqing January 2001 (has links)
The work of this thesis is to investigate new techniques for Integral Field Spectroscopy (IPS) to make the most efficient use of modem large telescopes. Most of the work described is aimed at the FMOS for the SUBARU 8m telescope. Although this is primarily a system for Multiple Object Spectroscopy (MOS) employing single fibres, there is an option to include a multiple-IFS (MIPS) system. Much of this thesis is therefore aimed at the design and prototyping of critical systems for both the IPS and MOS modes of this instrument. The basic theory of IFU design is discussed first. Some particular problems are described and their soludons presented. The design of the MIPS system is described together with the construction and testing of a prototype deployable IFU. The assembly of the pickoff/fore-optics, microlens array and fibre bundle and their testing are described in detail. The estimated performance of the complete module is presented together with suggestions for improving the system efficiency which is currently limited by the performance of the microlens array. The prototyping of the MIPS system is supported by an extensive programme of testing of candidate microlens arrays. Another critical aspect of the instrument is the ability to disconnect the (IPS and MOS) fibre input which is installed on a removable prime focus top-end ring from the spectrographs which are mounted elsewhere on the telescope. This requires high-performance multiple fibre connectors. The designs of connectors for the MOS and IPS modes are described. Results from the testing of a prototype for the MOS mode are presented. This work is supported by a mathematical model of the coupling efficiency which takes into account optical aberrations and alignment errors. The final critical aspect of FMOS which has been investigated is the design of the spectrographs. The baseline system operates in the near-infrared (NIR) but an additional visible channel is an option. Efficient designs for both the visible and NIR systems are presented. The design of the NIR spectrograph presents challenges in the choice of materials for the doublet and triplet lenses employed. The choice of material and the combinations in which they can be used are described. This thesis shows that all these critical aspects of FMOS have good solutions that will result in good performance of the whole instrument. For the multiple IFU system, the prototype demonstrates acceptable performance which can be made excellent by the use of a better microlens array. The multiple fibre connector prototype already indicates excellent performance. Finally, the spectrograph designs presented should result in high efficiency and good image quality.
3

Traceable Imaging Spectrometer Calibration and Transformation of Geometric and Spectral Pixel Properties

Baumgartner, Andreas 07 February 2022 (has links)
Over the past several decades, push-broom imaging spectrometers have become a common Earth observation tool. Instruments of this type must be calibrated to convert the raw sensor data into units of spectral radiance. Calibration is in this case a two-step process: First, a sensor model is obtained by performing calibration measurements, which is then used to convert raw signals to spectral radiance data. Further processing steps can be performed to correct for optical image distortions. In this work, we show the complete calibration process for push-broom imaging spectrometers, including uncertainty propagation. Although the focus is specifically on calibrating a HySpex VNIR-1600 airborne-imaging spectrometer, all methods can be adapted for other instruments. We discuss the theory of push-broom imaging spectrometers by introducing a generic sensor model, which includes the main parameters and effects of such instruments. Calibrating detector-related effects, such as dark signal, the noise as a function of the signal, and temperature effects is shown. Correcting temperature effects significantly reduces measurement errors. To determine the signal non-linearity, we built a setup based on the light-addition method and improved this method to allow smaller signal level distances of the sampling points of the non-linearity curve. In addition, we investigate the non-linearity of the integration time. The signal (<=15%) and the integration time (<=0.5%) non-linearities can be corrected with negligible errors. After correcting both non-linearity effects, a smearing effect is revealed, which is investigated in detail. We use a collimator and monochromator setup for calibrating the geometric and spectral parameters, respectively. To accurately model the angular and spectral response functions, we propose using cubic splines, which leads to significant improvements compared to previously used Gaussian functions. We present a new method that allows interpolation of the cubic spline based response functions for pixels not measured. The results show that the spectral and geometric properties are non-uniform and change rapidly within a few pixels. The absolute radiometric calibration is performed with a lamp-plaque setup and an integrating sphere is used for flat-fielding. To mitigate the influence of sphere non-uniformities, we rotate the instrument along the across-track angle to measure the same spot of the sphere with each pixel. We investigate potential systematic errors and use Monte Carlo simulations to determine the uncertainties of the radiometric calibration. In addition, we measure the polarization sensitivity with a wire-grid polarizer. Finally, we propose a novel image transformation method that allows manipulation of geometric and spectral properties of each pixel individually. Image distortions can be corrected by changing a pixel's center angles, center wavelength, and response function shape. This is done by using a transformation matrix that maps each pixel of a target sensor B to the pixels of a source sensor A. This matrix is derived from two cross-correlation matrices: Sensor A and itself, and sensor B and sensor A. We provide the mathematical background and discuss the propagation of uncertainty. A case study shows that the method can significantly improve data quality.
4

A Tunable Snapshot Imaging Spectrometer

Tebow, Christopher January 2005 (has links)
A tunable snapshot imaging spectrometer has been demonstrated. A liquid crystal spatial light modulator (LC SLM) has been integrated into a computed tomographic imaging spectrometer (CTIS) to achieve tunability. The LC SLM allows for rapid, programmable, and non-mechanical alteration of its phase profile by the application of appropriate voltages to its transparent electrodes.The goal of this dissertation is twofold: (1) to integrate a liquid crystal spatial light modulator into a CTIS instrument and characterize its performance as a tunable CTIS disperser, and (2) to implement tunability by analyzing different CTIS configurations.The theoretical model of CTIS operation, calibration, reconstruction, and disperser design are covered in detail. The cross talk of the LC SLM forces the use of a feedback design algorithm rather than designing the desired phase profile a priori in the computer. The modifications to the current polychromatic linear inversion technique for use with the LC SLM in feedback are presented. The result of the modifications is the successful integration of a reprogrammable (i.e. tunable) disperser for the CTIS instrument.The implementation of tunability is explored by analyzing the spectral resolution of a reconstructed point source for different disperser configurations. A method for experimentally determining the CTIS spectral resolution is presented.
5

Optical Thickness Retrievals of Subtropical Cirrus and Arctic Stratus from Ground-Based and Airborne Radiance Observations Using Imaging Spectrometers / Ableitung wolkenoptischer Dicken von Subtropischen Zirrus und Arktischen Stratus aus bodengebundenen und flugzeuggetragenen Messungen eines abbildenden Spektrometers

Schäfer, Michael 18 July 2016 (has links) (PDF)
The development and application of new cloud retrieval methods from ground–based and airborne measurements of spectral radiance fields above heteorogeneous surfaces is introduced. The potential of imaging spectrometers in remote–sensing applications is evaluated. The analyzed spectral radiance fields were measured during two international field campaigns in the visible wavelength range (400–970 nm) with high spatial (<10m) resolution. From ground–based measurements, high ice clouds were observed and from airborne measurements Arctic stratus. From the measurements, cloud optical thickness is retrieved with high spatial resolution and the horizontal cloud inhomogeneities are investigated. Depending on the measurement configuration, different uncertainties arise for the retrieval of the cloud optical thickness. A reduction of those uncertainties is derived by a specification of the ice crystal shape to improve the retrieval of the optical thickness of high ice clouds. The ice crystal shape is obtained independently from the angular information of the scattering phase function features, imprinted in the radiance fields. A performed sensitivity study reveals uncertainties of up to 90%, when neglecting this information and applying a wrong crystal shape to the retrieval. For remote-sensing of Arctic stratus, the highly variable surface albedo influences the accuracy of the cloud optical thickness retrieval. In cloudy cases the transition of reflected radiance from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce the reflected radiance above bright surfaces in the vicinity of open water, while it is enhanced above open sea. This results in an overestimation of to up to 90% in retrievals of the optical thickness. This effect is investigated. Using observations and three-dimensional radiative transfer simulations, this effect is quantified to range to up to 2200 m distance to the sea-ice edge (for dark-ocean albedo of αwater = 0.042 and sea-ice albedo of αice = 0.91 at 645 nm wavelength) and to depend on macrophysical cloud and sea-ice properties. The retrieved fields of cloud optical thickness are statistically investigated. Auto–correlation functions and power spectral density analysis reveal that in case of clouds with prevailing directional cloud structures, cloud inhomogeneities cannot be described by a universally valid parameter. They have to be defined along and across the prevailing cloud structures to avoid uncertainties up to 85%. / Im folgenden wird die Entwicklung und Anwendung neuer Ableitungsverfahren von Wolkenparametern, basierend auf bodengebundener und flugzeuggetragener spektraler Strahldichtemessungen über heterogenen Untergründen, vorgestellt und das Fernerkundungspotential abbildender Spektrometer evaluiert. Die spektralen Strahldichtefelder wurden während zweier internationaler Feldkampagnen im sichtbaren Wellenlängenbereich (400–970 nm) mit hoher räumlich Auflösung (<10m) gemessen. Bodengebundene Messungen wurden genutzt, um hohe Eiswolken zu beobachten und flugzeuggetragenen um arktischen Stratus zu beobachten. Aus den Messungen werden räumlich hochaufgelöste wolkenoptische Dicken abgeleitet und anschließend horizontale Wolkeninhomogenitäten untersucht. Die Ableitung der wolkenoptischen Dicke birgt je nach Messkonfiguration verschiedene Unsicherheiten. Eine Reduzierung der Unsicherheiten wird durch die Vorgabe einer Eiskristallform zur Verbesserung der Ableitung der optischen Dicke hoher Eiswolken erreicht. Diese werden unabhängig aus den winkelabhängigen, in das gemessene Strahldichtefeld eingeprägten Eigenschaften der Streuphasenfunktion, abgeleitet. Bei Vernachlässigung dieser Information und Wahl der falschen Eiskristallform, treten Fehler in der abgeleiteten optischen Dicke von bis zu 90% auf. Bei der Fernerkundung von arktischem Stratus beeinflusst die sehr variable Bodenalbedo die Genauigkeit der Ableitung der optischen Dicke. Beim Übergang von Meereis zu Wasser, findet die Abnahme der reflektierten Strahldichte im bewölktem Fall nicht direkt über der Eiskante, sondern horizontal geglättet statt. Allgemein reduzieren Wolken die reflektierte Strahldichte über Eisflächen nahe Wasser, während sie über dem Wasser erhöht wird. Dies führt zur Überschätzung der wolkenoptischen Dicke über Wasserflächen nahe Eiskanten von bis zu 90 %. Dieser Effekt wird mit Hilfe von Beobachtungen und dreidimensionalen Strahlungstransferrechnungen untersucht und es wird gezeigt, dass sein Einfluss noch bis zu 2200 m Entfernung zur Eiskante wirkt (für Meeresalbedo 0.042 und Meereisalbedo 0.91 bei 645 nm Wellenlänge) und von den makrophysikalischen Wolken- und Meereiseigenschaften abhängt. Die abgeleiteten Felder der optischen Dicke werden statistisch ausgewertet, um die Inhomogeneität der Wolken zu charakterisieren. Autokorrelationsfunktionen und Leistungsdichtespektren zeigen, dass Inhomogenitäten von Wolken mit vorranging richtungsabhängiger Struktur nicht mit einem allgemeingültigen Parameter beschrieben werden können. Es sind Inhomogenitätsmaße entlang und entgegen der jeweiligen Wolkenstrukturen nötig, um Fehler von bis zu 85% zu vermeiden.
6

Optical Thickness Retrievals of Subtropical Cirrus and Arctic Stratus from Ground-Based and Airborne Radiance Observations Using Imaging Spectrometers

Schäfer, Michael 29 June 2016 (has links)
The development and application of new cloud retrieval methods from ground–based and airborne measurements of spectral radiance fields above heteorogeneous surfaces is introduced. The potential of imaging spectrometers in remote–sensing applications is evaluated. The analyzed spectral radiance fields were measured during two international field campaigns in the visible wavelength range (400–970 nm) with high spatial (<10m) resolution. From ground–based measurements, high ice clouds were observed and from airborne measurements Arctic stratus. From the measurements, cloud optical thickness is retrieved with high spatial resolution and the horizontal cloud inhomogeneities are investigated. Depending on the measurement configuration, different uncertainties arise for the retrieval of the cloud optical thickness. A reduction of those uncertainties is derived by a specification of the ice crystal shape to improve the retrieval of the optical thickness of high ice clouds. The ice crystal shape is obtained independently from the angular information of the scattering phase function features, imprinted in the radiance fields. A performed sensitivity study reveals uncertainties of up to 90%, when neglecting this information and applying a wrong crystal shape to the retrieval. For remote-sensing of Arctic stratus, the highly variable surface albedo influences the accuracy of the cloud optical thickness retrieval. In cloudy cases the transition of reflected radiance from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce the reflected radiance above bright surfaces in the vicinity of open water, while it is enhanced above open sea. This results in an overestimation of to up to 90% in retrievals of the optical thickness. This effect is investigated. Using observations and three-dimensional radiative transfer simulations, this effect is quantified to range to up to 2200 m distance to the sea-ice edge (for dark-ocean albedo of αwater = 0.042 and sea-ice albedo of αice = 0.91 at 645 nm wavelength) and to depend on macrophysical cloud and sea-ice properties. The retrieved fields of cloud optical thickness are statistically investigated. Auto–correlation functions and power spectral density analysis reveal that in case of clouds with prevailing directional cloud structures, cloud inhomogeneities cannot be described by a universally valid parameter. They have to be defined along and across the prevailing cloud structures to avoid uncertainties up to 85%. / Im folgenden wird die Entwicklung und Anwendung neuer Ableitungsverfahren von Wolkenparametern, basierend auf bodengebundener und flugzeuggetragener spektraler Strahldichtemessungen über heterogenen Untergründen, vorgestellt und das Fernerkundungspotential abbildender Spektrometer evaluiert. Die spektralen Strahldichtefelder wurden während zweier internationaler Feldkampagnen im sichtbaren Wellenlängenbereich (400–970 nm) mit hoher räumlich Auflösung (<10m) gemessen. Bodengebundene Messungen wurden genutzt, um hohe Eiswolken zu beobachten und flugzeuggetragenen um arktischen Stratus zu beobachten. Aus den Messungen werden räumlich hochaufgelöste wolkenoptische Dicken abgeleitet und anschließend horizontale Wolkeninhomogenitäten untersucht. Die Ableitung der wolkenoptischen Dicke birgt je nach Messkonfiguration verschiedene Unsicherheiten. Eine Reduzierung der Unsicherheiten wird durch die Vorgabe einer Eiskristallform zur Verbesserung der Ableitung der optischen Dicke hoher Eiswolken erreicht. Diese werden unabhängig aus den winkelabhängigen, in das gemessene Strahldichtefeld eingeprägten Eigenschaften der Streuphasenfunktion, abgeleitet. Bei Vernachlässigung dieser Information und Wahl der falschen Eiskristallform, treten Fehler in der abgeleiteten optischen Dicke von bis zu 90% auf. Bei der Fernerkundung von arktischem Stratus beeinflusst die sehr variable Bodenalbedo die Genauigkeit der Ableitung der optischen Dicke. Beim Übergang von Meereis zu Wasser, findet die Abnahme der reflektierten Strahldichte im bewölktem Fall nicht direkt über der Eiskante, sondern horizontal geglättet statt. Allgemein reduzieren Wolken die reflektierte Strahldichte über Eisflächen nahe Wasser, während sie über dem Wasser erhöht wird. Dies führt zur Überschätzung der wolkenoptischen Dicke über Wasserflächen nahe Eiskanten von bis zu 90 %. Dieser Effekt wird mit Hilfe von Beobachtungen und dreidimensionalen Strahlungstransferrechnungen untersucht und es wird gezeigt, dass sein Einfluss noch bis zu 2200 m Entfernung zur Eiskante wirkt (für Meeresalbedo 0.042 und Meereisalbedo 0.91 bei 645 nm Wellenlänge) und von den makrophysikalischen Wolken- und Meereiseigenschaften abhängt. Die abgeleiteten Felder der optischen Dicke werden statistisch ausgewertet, um die Inhomogeneität der Wolken zu charakterisieren. Autokorrelationsfunktionen und Leistungsdichtespektren zeigen, dass Inhomogenitäten von Wolken mit vorranging richtungsabhängiger Struktur nicht mit einem allgemeingültigen Parameter beschrieben werden können. Es sind Inhomogenitätsmaße entlang und entgegen der jeweiligen Wolkenstrukturen nötig, um Fehler von bis zu 85% zu vermeiden.
7

Rheo-NMR studies of viscoelastic secondary flows in ducts of non-circular cross-section

Schroeder, Christian Berthold Karl 07 May 2012 (has links)
The existence of hydrodynamically developed, laminar Viscoelastic Secondary Flows (VSFs) of non-Newtonian fluids in straight ducts of non-circular cross-section was proposed in the 1950's. VSFs have since been observed sporadically, and only once with a velocimetric technique. Using axial and transverse full flow-field velocity-position raster maps made with Rheological Nuclear Magnetic Resonance (Rheo-NMR), Newtonian and non-Newtonian fluid flows were quantified in Hagen-Poiseuille and Power Law contexts, over more than two orders of magnitude of flow rate, in ducts of circle, square, triangle, and pentagon cross-section. VSF was reliably and repeatedly observed to occur at between one part in 130 and one part in 600 of the primary axial flow velocity. Velocity measurements ranged from <10 µm/s to approximately 30 cm/s, suggesting a velocity dynamic range >3E4 without optimization. To obtain VSF flow direction information, a novel flow directional phantom was developed and characterized. Aqueous solutions of Polyethylene Oxide (PEO), Viscarin GP-109NF, Viscarin GP-209NF (V209), Hyaluronan (HA) in a Phosphate-Buffered Saline-like solvent, and an aqueous Polyethylene Glycol/PEO-based Boger fluid were investigated. Axial data was corroborated with related data gathered by an independent method. Basic simulations corroborated the VSF observations. Duct hydraulic diameters (>= 1.6 mm) approached the micro-channel regime. VSF detections in HA --- synovial fluid's principal component --- and V209 were novel, as were observations of some artifacts which were subsequently characterized and corrected. The detection of VSF in HA represents the first experimental evidence suggesting that its second normal stress (N_2) is comparable to that of better-characterized fluids. In the first application of a new VSF-based method, a particular Boger fluid's constant viscosity and, in the square duct, its lack of VSF were used with established criteria to suggest that the fluid's N_2 approached zero. The development of a rudimentary, but versatile and inexpensive home-built velocimetric spectrometer is detailed, as are several new components. An exhaustive VSF literature review is included. The remarkable transverse velocimetric ability of Rheo-NMR in both optically opaque and transparent system is highlighted, suggesting that perhaps the technique might represent, in both micro-channels and conventional ducts, the gold-standard in flow velocimetry.

Page generated in 0.0945 seconds