• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement de procédés d'implantation ionique par immersion plasma pour le photovoltaïque / Plasma-immersion ion implantation process development for photovoltaic applications

Michel, Thomas 05 June 2013 (has links)
Le dopage du silicium par implantation ionique pour le photovoltaïque est une application relativement récente dont l'essor se heurte encore aujourd'hui aux coûts élevés d'intégration au sein des lignes de fabrication des cellules solaires. L'implantation ionique par immersion plasma promet de répondre aux futures exigences du secteur en termes de coûts et de productivité.Ces travaux de thèse ont permis le développement de procédés d'implantation ionique par immersion plasma de l'équipement PULSION®, conçu par IBS, dédiés à la fabrication de cellules solaires en silicium monocristallin. Dans un premier temps, nous montrons qu'il permet la réalisation de profils de dopage d'émetteur de type n variés, répondant aux exigences des cellules solaires à haut rendement. Les émetteurs fabriqués sont caractérisés de manière chimique, physique et électrique afin de démontrer leur excellente qualité. L'intégration de l'implantation ionique des émetteurs au sein d'un processus de fabrication industriel et peu coûteux, développé par l'INES sur silicium monocristallin de type p, permet d'atteindre des rendements de conversion supérieurs à 19,3%, soit un gain de plus de 0,5% par rapport aux rendements obtenus avec des cellules usuelles à émetteurs dopés par diffusion POCl3.La réalisation d'émetteurs de type p est également étudiée dans ce mémoire afin de préparer la transition technologique vers les cellules solaires sur silicium monocristallin de type n. Confirmant les atouts et le potentiel de la technologie d'implantation ionique par immersion plasma, les travaux menés au cours de cette thèse débouchent sur la conception d'un prototype industriel PULSION® dédié au photovoltaïque. / Ion implantation is a major process technology for manufacturing integrated circuits. However, silicon doping by ion implantation for photovoltaics is a relatively recent application, and its growth still faces high costs of integration into solar cell production lines. Plasma-immersion ion implantation (PIII) promises to meet the future industry requirements in terms of costs and productivity.This thesis work has led to the development of processes dedicated to silicon-based solar cell manufacturing using the plasma-immersion ion implanter – PULSION® – designed by IBS. First, we show that PIII enables the realization of various doping profiles for phosphorus-doped emitters which fit the requirements of high-efficiency solar cells. Emitters thus fabricated are chemically, physically and electrically characterized to demonstrate their excellent quality. Those emitters, implanted through plasma immersion and integrated into a low cost solar cell manufacturing line from INES on monocrystalline silicon, enable to raise the conversion efficiency, obtained with conventional POCl3-diffused solar cells, by more than 0.5% absolute to reach efficiencies above 19.3%.Fabrication of p-type boron implanted emitters is also studied in order to improve conversion efficiencies of p-type silicon based solar cells, but also in order to anticipate the technological shift from p-type to n-type silicon material. Thanks to this thesis work, the strength and potential of PIII for photovoltaic applications have been proven and this has convinced IBS to design a PULSION® equipment dedicated to solar cell manufacturing.
2

Réalisation de jonctions ultra-minces par recuit laser : application aux détecteurs UV

Larmande, Yannick 23 November 2010 (has links) (PDF)
Depuis les années 1970, la taille des composants n'a cessé de diminuer. La réalisation de jonctions ultra-minces et fortement dopées est devenue un point clef dans la réduction des dispositifs microélectroniques. Les techniques de production doivent évoluer afin de répondre aux spécifications drastiques, en termes de taille des zones dopées et de leurs propriétés électriques, des prochains noeuds technologiques. Dans ce travail de thèse nous avons étudié le procédé d'activation au laser de dopants implantés par immersion plasma. Le laser à excimère utilisé (ArF) est absorbé dans moins de 10 nm de silicium, ce qui va permettre un recuit local. De plus, la courte durée d'impulsion va assurer un faible budget thermique, limitant la diffusion des dopants. En associant cette technique à l'implantation ionique par immersion plasma, dont l'intérêt est de pouvoir travailler à de très basses tensions d'accélération (quelques dizaines d'eV), nous pouvons réaliser des jonctions avec un fort taux d'activation sans diffusion. Après avoir présenté les différentes techniques de dopage pouvant être utilisées, nous avons décrit les dispositifs expérimentaux de traitement et de caractérisation utilisés. Des simulations ont permis de comprendre le rôle des paramètres laser sur le profil de température du silicium en surface. Après avoir choisi le laser le plus adapté parmi les lasers ArF, KrF et XeCl (respectivement : 193 nm - 15 ns, 248 nm - 35 ns, 308 nm - 50 ns), nous avons observé l'effet du nombre de tirs et de la mise en forme de faisceau afin d'optimiser le procédé. Pour terminer, des inhomogénéités dues aux bords de faisceau ont été mises en évidence et étudiées afin d'en limiter l'effet.
3

Développement d'un nouveau système d'implantation ionique en immersion plasma et analyses des processus de nitruration

Marot, Laurent 23 May 2001 (has links) (PDF)
L'objectif de ce travail était double : le développement d'un réacteur d'implantation par immersion plasma et l'analyse des mécanismes de nitruration. En ce qui concerne la nitruration des aciers, nous avons montré que des traitements de nitruration au potentiel flottant à des températures aussi basses que 300 °C étaient réalisables dans le réacteur URANOS avec des longueurs de diffusion de plusieurs centaines de microns. Pour les aciers faiblement alliés, les diffusions réalisées à 380 °C, conduisent à une amélioration notable des propriétés mécaniques de surface. Ainsi la dureté de surface est triplé et la limite d'endurance en fatigue augmente de 30 %, pour un traitement de 4 heures. Dans le cas des aciers inoxydables, des couches très dures (5 fois la dureté du substrat) d'austénite dilatée sont formées en surface. Le rôle de l'hydrogène dans le plasma, consiste non seulement à réduire la couche d'oxyde présente en surface du matériau, mais surtout à accélérer la cinétique d'enrichissement d'azote en profondeur, cela quelque soit le type d'acier. Le second objectif de cette thèse était le développement d'un nouveau réacteur d'implantation par immersion plasma. A basse température l'implantation d'azote sur des aciers entraîne la formation d'une couche dure de surface. L'implantation d'azote sur des alliages base aluminium révèle, toujours à basse température, la formation d'un film de nitrure d'aluminium (AlN). La grande originalité du réacteur que nous avons développé est de pouvoir réaliser des implantations à température élevée (300-1000 °C). Nous avons ainsi pu montrer qu'à 900 °C, sur des alliages base titane, on peut réaliser la croissance de films épais de TiN et Ti2N et au-delà induire la formation d'une couche de diffusion sur plus de 60 µm. L'implantation de silicium à température contrôlée a permis de montrer qu'un film transparent, de nitrure de silicium, pouvait croître grâce à un transport combinant l'action thermique et l'implantation ionique. Dans ce cas et pour des doses suffisamment élevées, la couche atteint 40 nanomètres et présente la stœchiométrie du nitrure Si3N4. Ce résultat est parfaitement inaccessible aux autres techniques de nitruration puisque, la croissance de nitrure est auto-limitée à des épaisseurs inférieurs à 5 nm.

Page generated in 0.0581 seconds