• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INFLUENCES OF CHROMIUM (III) PICOLINATE ON PIGS UNDER THERMAL, IMMUNE OR DIETARY STRESS, AND ON ADRENAL STEROID SECRETION

Kim, Beob Gyun 01 January 2007 (has links)
The objectives were to investigate the effects of chromium (III) picolinate (CrPic; up to 2,000 ppb of Cr) on growing pigs subjected to a variety of stressors including thermal, immune, or dietary stress and to examine the effects of CrPic on steroidogenesis from adrenocortical cells. In the thermal stress study, high ambient temperature caused reduced weight gain and feed consumption (P andlt; 0.01), and low ambient temperature caused increased feed intake and feed:gain (P andlt; 0.01). However, these effects were not moderated by CrPic, and respiratory rate, plasma cortisol, or plasma glucose were unaffected by CrPic. In the immune stress study, pigs challenged with lipopolysaccharide (LPS) lost 951 g during 12 hours post injection, while the phosphate buffer saline (PBS) injected group gained 170 g (P andlt; 0.001). The LPS group showed higher rectal temperature (P andlt; 0.05), higher respiratory rate (P andlt; 0.05), greater plasma cortisol (P andlt; 0.001), and lower plasma glucose (P andlt; 0.05) than the PBS group. These effects were not ameliorated by CrPic. In the dietary stress study, pigs fed the high-fat diet (HFD) gained weight faster (P andlt; 0.05), consumed less feed (P andlt; 0.001), and had lower feed:gain (P andlt; 0.001). Plasma insulin concentration on d 14 decreased with CrPic (P andlt; 0.05) in a linear manner (P = 0.05). Consumption of the HFD resulted in increases of slaughter weight, perirenal fat, and back fat measurements (P andlt; 0.01). The CrPic resulted in linear reductions of carcass weight, last rib fat, last lumbar fat and average backfat (P andlt; 0.10). The effects of CrPic on carcass fat measurements were more significant in barrows than gilts. In the adrenocortical cell study, forskolin stimulated cortisol and DHEAs secretion from H295R cells. CrPic inhibited aspects of steroidogenesis in agonist-stimulated adrenocortical cells. Overall, dietary CrPic was unable to moderate the stress related effects due to high ambient temperature, low ambient temperature, or an endotoxin challenge. However, CrPic attenuated effects of HFD, mainly on body fat accretion of pigs, especially in barrows, and CrPic inhibited steroidogenesis in stimulated adrenocorticoid cells.
2

Le stress chez l’abeille domestique (Apis mellifera) : analyse des modifications physiologiques et comportementales / Stress in honeybees (Apis mellifera) : physiological and behavioural modifications

Bordier, Célia 19 May 2017 (has links)
L’abeille domestique (Apismellifera) a un rôle majeur dans les écosystèmes naturels et agronomiques mais est exposée à un nombre croissant de pressions environnementales (nouveaux parasites, xénobiotiques, variations climatiques et malnutrition). Dans ce contexte, la compréhension des phénomènes impliqués dans les réponses au stress ainsi que leurs coûts associés devient cruciale pour mieux appréhender l’impact de ces pressions sur les abeilles. L’émergence d’un stress perturbe généralement l’homéostasie de l’organisme qui doit mettre en place une cascade d’adaptations physiologiques et comportementales pour le surmonter. Cependant, du fait de son mode de vie social, il est raisonnable de penser que les réponses vont se faire dans l’intérêt du groupe et non plus seulement dans l’intérêt de l’individu. Afin de caractériser les réponses au stress et de déterminer leur spécificité en fonction de la nature du stimulus (xénobiotiques, immunitaire, thermique, social), j’ai adopté une approche multidisciplinaire en ciblant l’identification des modifications i) physiologiques associées à la division du travail, ii) du métabolisme énergétique, et iii) comportementales. J’ai démontré quequelque soit leur rôle social (nourrice, gardienne, butineuse), les abeilles répondent de la même manière à un stress donné, si celui-­ci est écologiquement pertinent (hyperthermie et stress immunitaire mais pas xénobiotique). Une tendance à la diminution des ressources énergétiques a également été observée suite à un stress suggérant une modification des performances comportementales. Afin de vérifier cela, je me suis concentrée sur l’activité de butinage; le vol chez les insectes étant un des processus physiologiques les plus coûteux du règne animal. Une altération des performances de butinage a été mise en évidence chez les abeilles soumises à un stress immunitaire avec une réorientation des préférences de butinage au dépens du pollen, plus coûteux àc ollecter et moins riche en ressource énergétique que le nectar ; ceci probablement pour pallier au coût énergétique du stress. En revanche, en réponse àune hyperthermie, une augmentation de l’activité de butinage a été observée mais sans engendrer un coût supplémentaire au niveau des ressources collectées.Ces résultats sont discutés à la lumière du coût énergétique du stress et des conséquences potentielles sur les performances des abeilles, qui infine pourrait perturber l’homéostasie énergétique de la colonie. / Honeybees (Apis mellifera), which play an important role in natural and agronomic ecosystems, are exposed to a growing number of environmental pressures(new parasites, pesticides, climatechangeand poor nutrition). In this context, deciphering the mechanisms underlying stress responses and their costs becomes crucial to better understand theim pact of these pressures. Stress usually represents a challenge to the homeostasis of a norganism. In response, a cascade of physiological and behavioural adaptations enables the organism to cope with the stress. However, dueto their sociallife style, we could suggest that stress response in honeybees will occurin the interest of the colony and not only in the interest of the individual. To characterise the stress response and determine its specificity according to the stimulus (xenobiotic, immune, thermal, social), I developed a multidisciplinary approach to identify changes in i) task-­related physiology, ii) energetic metabolism, and iii) behaviour. I demonstrated that, regardless of their social function (nurse, guard, forager), bees respond in the sameway to a given stress, if itis ecologically-­relevant (heat and immune stress but not pesticides). Atendencytoward decreas ingenergetic resources was also observed following stress exposure, which suggests changes in behavioural performance.In order to test this hypothesis, I analysed changes in foraging activity in response to stress, as insect flight is one of the most costly physiological processes in the animal kingdom. I found that for aging performances were affected by animmune stress : bees changed their foraging preferences at the expense of pollen, probably to reduce the stress energetic cost, given that pollen is more costly to collect and provides alower energetic return than nectar. In contrast, in response to heat stress, an increase in colony for aging activity was observed, without an additional cost on resource collection. These results are discussed in the light of stress energetic cost and its potential consequences onhoneybee performances, which could disrupt the colony’s energetic homeostasis.

Page generated in 0.0613 seconds