• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Design and Synthesis of Novel Barbiturates of Pharmaceutical Interest

Neumann, Donna 21 May 2004 (has links)
Barbituric acids have been historically classified as compounds that act on the central nervous system, and as such provide therapeutic uses as anxiolytics, sedatives, hypnotics, and anticonvulsants. Recent investigations of barbituric acid derivatives have provided scientists with information that barbituric acids may have applications in antibacterial, anti-chlamydial, anti-viral, as well as anti-cancer treatments. Additionally, recent literature accounts have indicated that barbituric acid derivatives may also act as immune modulators. The recent explorations of barbiturates and their potential anti-cancer and immune modulating properties are the subject of this work. Novel synthetic approaches to the development of new barbituric acid derivatives were explored thoroughly, and the mechanisms of these novel syntheses were detailed by experiment and spectroscopic characterizations. In many cases the reaction procedures were designed for large scale, efficient syntheses, that are directly applicable to pharmaceutical production of these potentially valuable therapeutic compounds. Several new products unique to barbituric acid reactions were characterized spectroscopically. Barbituric acid derivatives were the subject of biological evaluation, and the results are reported in this work. Overall, unique synthetic approaches to the production of novel barbituric acid derivatives were accomplished to create several new classes of barbiturates with potential applications in cancer treatment.
2

Regulation of the Cellular Inhibitor of Apoptosis 1 (cIAP1) Translation by IRES Trans-Acting Factors and Impact on Cancer

Faye, Mame Daro January 2015 (has links)
Apoptosis is the mechanism by which complex multicellular organisms induce the programmed death of damaged cells, thus maintaining tissue homeostasis. One of the main hallmarks of cancer, apoptosis is tightly regulated by pro- and anti-apoptotic factors whose equilibrium will decide of the fate of the cell. Among these factors, the cellular inhibitor of apoptosis cIAP1 is a key regulator of nuclear factor-κB dependent signaling and of caspase-8 mediated apoptosis. cIAP1 expression is controlled primarily at the translational level through an internal ribosome entry site (IRES) that facilitates the recruitment of the ribosome to the translation initiation start independently of the 5’ cap. We have previously identified four putative IRES trans-acting factors (ITAFs) that bind specifically to the cIAP1 IRES, namely NF45, NF90, IGF2BP1 and RH1. My research project characterised NF45 as an ITAF that positively regulates the IRES-mediated translation of cIAP1 and of the Xlinked inhibitor of apoptosis, XIAP. This regulation is important for maintaining Survivin and Cyclin E protein levels and insuring proper cell division. Furthermore, I showed that IGF2BP1 is another ITAF that is overexpressed in rhabdomyosarcoma cancer (RMS) and positively regulates cIAP1 translation, thus leading to apoptotic resistance in these cells. Importantly, the use of Smac mimetics, chemical compounds that cause cIAP1 proteasomal degradation, induces TNFα-mediated apoptosis of RMS cells and leads to growth inhibition of RMS xenograft tumors as well as significantly improved survival. Finally, I show that certain modulators of innate immunity synergize with Smac mimetics to improve the killing of RMS cancer cells. Hence, cIAP1 translation regulation by NF45 and IGF2BP1 is highly important for maintaining proper functioning of the cell and dysregulation of these ITAFs can lead to carcinogenesis.
3

Study of the interplay between hepatitis B and hepatitis delta viruses and evaluation of investigational anti-HDV immuno-modulators in superinfection cell culture models / Étude des interactions entre les virus des hépatites B et delta et évaluation de nouveaux immuno-modulateurs anti-HDV dans des modèles cellulaires de surinfection

Alfaiate, Dulce 25 September 2015 (has links)
La surinfection par HDV/ HBV est la forme la plus grave d'hépatite virale chronique et affecte entre 15-20 millions de patients au niveau mondial. HDV n'est pas susceptible aux traitements anti-HBV et le taux de réponse à l'IFNα est <25%. Malgré une progression plus rapide de la maladie hépatique, la majorité des patients présente une suppression de la réplication du HBV. Les détails des interactions entre HDV, HBV et le système immunitaire inné des cellules infectées restent inconnus. Les objectifs de ces travaux de thèse ont été: i) l'étude de l'infection par HDV et son interaction avec la réponse innée cellulaire; ii) l'identification de nouvelles stratégies thérapeutiques anti-HDV; iii) l'exploration de l'interaction entre HDV et HBV. L'approche expérimentale a été basée sur l'infection de cellules dHepaRG, capables d´entretenir des cycles réplicatifs complets de HBV et HDV et ayant une réponse immunitaire innée physiologique. Nous avons observé que: i) l'infection par HDV est associée à un réplication forte dans un nombre limité de cellules, et à une induction de l'expression des ISGs; ii) le traitement des cellules infectées par HDV avec de l'IFNα ne conduit pas à une induction accrue des ISGs et a une faible activité antivirale. Quelques agonistes de PRR, notamment activant la voie NF-kB, induisent une forte diminution de la réplication de HDV; iii) malgré le faible nombre de cellules infectées, HDV et ses protéines induisent une diminution de la réplication de HBV. Ces travaux ouvrent des perspectives importantes concernant la caractérisation de la pathogénèse de l'hépatite delta et l'identification de nouvelles stratégies thérapeutiques immuno modulatrices / HDV/HBV superinfection is the most aggressive form of chronic viral hepatitis and is estimated to affect 15-20 million patients worldwide. HDV is not susceptible to available direct anti-HBV drugs and sustained response to IFNα therapy occurs in less than 1/4 of patients. Despite the faster progression of liver disease, most HDV/ HBV infected patients present a suppression of HBV replication. The details of the interactions between HDV, HBV and the host cell innate immune response remain largely unexplored and research efforts have been limited by the lack of infection models. The aims of this thesis work were: i) to study HDV infection and the interplay with the host innate immune response; ii) to identify novel therapeutic strategies for the inhibition of HDV; iii) to further explore HDV/ HBV interference. The experimental strategy was based on infection of dHepaRG cells, which are known to be permissive to both HBV and HDV full replicative cycles and to present physiological innate immune responses. We observed that: i) HDV infection is associated with a strong, yet transient replication, a potent induction of the expression of ISGs; ii) IFN-α treatment of HDVinfected cells does not induce a further increase of ISG expression and has a modest antiviral activity. Conversely, some PRR agonists, in particular those inducing the NFkB pathway, induce a strong decline in HDV replication; iii) despite the low number of coinfected cells, HDV as well as its encoded proteins exert a repressive effect on HBV replication. Our work opens an array of perspectives on the pathogenesis of hepatitis delta and the identification of novel immune modulatory therapeutic strategies

Page generated in 0.0553 seconds