• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A dissection of Kekkon5 and its role in mediating epithelial junction architecture

Ernst, Christina Lynn 28 April 2010 (has links)
The acquisition of cellular adhesion machinery likely represented a key factor in the evolutionary transition from unicellular to multicellular organisms. Within metazoa, cellular adhesion is an integral aspect of organismal integrity through its regulation of a wide range of processes, including tissue patterning, cellular proliferation, and migration. As such, dysregulation of adhesion has been linked to diverse pathologies including cancers and neurodegenerative diseases. At the molecular level, adhesion is mediated by specific transmembrane cell adhesion molecules (CAMs) and intracellular complexes that create a dynamic link between the extracellular milieu and the intracellular cytoskeleton. At the sequence level, immunoglobulin domains act to mediate homo- and heterophilic interactions among CAMs and thus adhesion between neighboring cells. LIGs, a family of Ig-containing proteins that contain Leucine-rich repeats, represent candidates for novel CAMs with functions in axonal regeneration and synaptic pathfinding - all of which are highly dependent on cellular adhesion. In Drosophila, two LIG family members, Kekkon1 (Kek1) and Kekkon5 (Kek5) have been been implicated in EGF signaling, and Bone Morphogenetic Protein signaling as well as cellular adhesion, respectively. To investigate the putative role of Kek5 as a CAM, characterization of Kek5 activity was carried out at the cellular and molecular level. From this it was discovered that Kek5 is able to induce a dramatic upregulation of the adherens junction component Armadillo, in addition to epithelial extrusion and cell enlargement. Together, the studies presented within support a model in which Kek5 acts in a homophilic fashion to upregulate Arm and that this activity is functionally separable from other observed effects (epithelial extrusion and cell enlargement).
2

Roles of immunoglobulin domain proteins echinoid and friend-of-echinoid in drosophila neurogenesis

Chandra, Shweta 20 July 2004 (has links)
No description available.
3

Rôles de DICAM et ALCAM dans la migration des lymphocytes vers le système nerveux central

Grasmuck, Camille 04 1900 (has links)
La perturbation de la barrière hémo-encéphalique et la migration des lymphocytes de la périphérie vers le système nerveux central (SNC) sont des événements précoces dans la formation des lésions cérébrales de sclérose en plaques (SEP). Dans ce contexte, les lymphocytes passent au travers des barrières hémo-encéphalique ou hémo-méningée pour atteindre le SNC et sont des contributeurs importants dans l’inflammation et les dommages tissulaires. Pour migrer à travers les barrières du SNC, les lymphocytes pathogéniques expriment des molécules d’adhérence. Identifier les acteurs clés à la migration des lymphocytes pathogéniques en estimant la contribution des molécules d’adhérence dans ce processus est la prochaine étape pour le développement de thérapies pour traiter la SEP. L’objectif de ce projet est d’explorer le rôle de deux molécules d’adhérence que sont ALCAM (de l’anglais : activated leukocytes cell adhesion molecule) et DICAM (de l’anglais : dual immunoglobulin domain containing cell adhesion molecule) dans la migration des lymphocytes pathogéniques vers le SNC pendant la SEP. Notre objectif principal se subdivise en deux sous-objectifs. En premier, notre but est de caractériser le rôle d’ALCAM dans le passage des lymphocytes B à travers les barrières du SNC dans un contexte neuroinflammatoire. En second, nous explorons le rôle de DICAM dans la migration des lymphocytes T auxiliaires 17 (TH17) vers le SNC en neuroinflammation. Nous faisons l’hypothèse qu’ALCAM contribue à la migration des lymphocytes B vers le SNC et que DICAM est impliqué dans la migration des lymphocytes TH17 à travers la barrière hémo-encéphalique pendant la SEP. Ces molécules d’adhérence seraient alors impliquées dans la pathogenèse de la SEP et seraient de potentielles cibles thérapeutiques pour traiter cette maladie. Nous avons d’abord utilisé une combinaison de spectrométrie de masse, PCR quantitative, cytométrie de flux et microscopie afin d’explorer l’expression de chacune de ses deux molécules d’adhérence sur les lymphocytes d’intérêt périphériques ex vivo ou différenciés in vitro. Des analyses en cytométrie en flux et microscopie nous ont permis de caractériser leur expression dans le sang périphérique et dans les lésions cérébrales de personnes atteintes de SEP. Ensuite, les expériences d’adhérence en flux et de migration in vitro effectuées en déplétant la molécule d’adhérence d’intérêt ont permis de mettre en évidence leur rôle dans différentes étapes de la migration des lymphocytes à travers les cellules endothéliales des barrières du SNC. Pour finir, le traitement de plusieurs modèles murins de SEP, appelés EAE (de l’anglais : experimental autoimmune encephalomyelitis), avec des anticorps bloquant anti-ALCAM ou anti-DICAM ont permis d’explorer le potentiel effet de tels traitements sur la sévérité de la maladie. Dans la première étude, nos résultats montrent qu’ALCAM est préférentiellement exprimée par les lymphocytes B pro-inflammatoires, mémoires et effecteurs au potentiel pathogénique. En tant que molécule d’adhérence, ALCAM contribue à leur migration à travers les cellules endothéliales des barrières hémo-encéphalique et hémo-méningée chez la souris et l’humain. De plus, nos expériences ont permis de montrer que la fréquence de lymphocytes B ALCAM+ est augmentée dans le sang périphérique des personnes atteintes de SEP et ces cellules sont aussi présentes dans les lésions et les infiltrats méningées en SEP. Finalement, bloquer ALCAM in vivo réduit la sévérité de la maladie EAE en diminuant l’infiltration des lymphocytes B au SNC. Dans la seconde étude, nous avons montré que parmi les sous-types de lymphocytes TH, DICAM est préférentiellement exprimée par les lymphocytes TH17. Dans les lésions de SEP, DICAM et son ligand αVβ3 co-localisent avec des marqueurs de cellules endothéliales suggérant que ces deux molécules pourraient être présentées à la lumière des vaisseaux aux lymphocytes TH17 circulants. Dans le sang périphérique, la fréquence de lymphocytes T CD4+ exprimant DICAM est augmentée chez les personnes atteintes de SEP et cette augmentation corrèle avec l’activité de la maladie. Nos expériences ont montré que DICAM est impliquée dans l’adhérence, l’arrêt et la diapédèse des lymphocytes TH17 à travers les cellules endothéliales de la barrière hémo-encéphalique in vitro et in vivo. Finalement, le traitement de souris EAE avec un anticorps bloquant DICAM permet de réduire la sévérité de la maladie et diminue la migration des lymphocytes TH17 vers le SNC. Nos résultats indiquent un rôle d’ALCAM dans la migration des lymphocytes B et que DICAM, préférentiellement exprimé par les TH17, médie leur migration vers le SNC. Bloquer ALCAM ou DICAM sont deux stratégies permettant de réduire l’accès au SNC de différents sous-types de cellules pathogéniques pendant la neuroinflammation. Ainsi, elles sont toutes deux de potentielles cibles thérapeutiques pour réduire la sévérité et la progression de la SEP. / Disruption of the blood-brain barrier and migration of lymphocytes from the periphery to the central nervous system (CNS) are early events in lesion formation during multiple sclerosis (MS). Lymphocytes readily cross the blood-brain barrier (BBB) and the blood-meningeal barrier (BMB) to infiltrate the CNS and are important contributors to inflammation and tissue damage. To migrate through the brain barriers, pathogenic lymphocytes express adhesion molecules. Identifying key players in lymphocyte migration by understanding the role of adhesion molecules is the next step to develop novel therapies to treat MS. The objective of this project is to explore the role of two distinct adhesion molecules ALCAM (activated leukocytes cell adhesion molecule) and DICAM (dual immunoglobulin domain containing cell adhesion molecule) in pathogenic lymphocytes migration to the CNS during MS. This thesis subdivides in two main objectives. First, we aim to characterize ALCAM role in B lymphocyte migration to the CNS during neuroinflammation. Second, we aim to explore DICAM role in T helper 17 (TH17) lymphocytes migration to the CNS in neuroinflammation. We hypothesized that ALCAM plays a role in B lymphocytes migration to the CNS during MS and that DICAM is involved in TH17 lymphocytes migration through the blood-brain barrier during MS. Those adhesion molecules might be involved in MS pathogenesis and therefore could become new therapeutic targets to treat MS. We first used mass spectrometry, quantitative PCR, flow cytometry and confocal microscopy to explore expression profiles of ALCAM and DICAM by peripheral lymphocytes subpopulations ex vivo and differentiated in vitro. Flow cytometry and confocal microscopy analysis also revealed how those adhesion molecules are expressed by lymphocytes in peripheral blood and brain lesions of people living with MS. Then, we performed flow adhesion and migration assay of lymphocytes depleted for the adhesion molecule of interest allowing us to address their role in multitstep migration process through brain barriers endothelial cells. Finally, using five distinct murine experimental autoimmune encephalomyelitis models (EAE), we explored how blocking ALCAM or DICAM in vivo could affect lymphocytes migration to the SNC and disease severity. In the first manuscript, we described that ALCAM is preferentially expressed by B lymphocytes with memory, pro-inflammatory and effector phenotypes. Functionally, ALCAM is involved in B lymphocyte migration through both the BBB and the BMB in mouse and human. Interestingly, we showed that ALCAM expressing B lymphocytes are increased in peripheral blood of people living with MS and they are recovered in meningeal and parenchymal MS lesions. Last, blocking ALCAM in vivo alleviates EAE severity by reducing B lymphocyte infiltration to the CNS. In the second manuscript, we showed that TH17 lymphocytes preferentially express DICAM and can adhere both to DICAM and its ligand αVβ3. Moreover, DICAM and αVβ3 are both overexpressed by inflamed brain endothelial cells. In MS lesions, we described that both molecules colocalize with endothelial cell markers suggesting that it could be presented to the vessel lumen to the circulating TH17 lymphocytes. In peripheral blood, we showed that DICAM+ memory CD4+ T lymphocytes frequency is increased in people living with MS and it correlates with active form of the disease. Then, we described DICAM as a player in TH17 lymphocyte adhesion, arrest and migration through BBB endothelial cells in vitro and in vivo. Last, we showed that treating mice with a neutralizing DICAM antibody in several distinct models of EAE, reduced disease severity and TH17 cell migration to the SNC. Our data provide evidence of the role of ALCAM in memory B lymphocyte migration and that DICAM is preferentially expressed by TH17 cells and mediate their migration to the CNS during neuroinflammation. Collectively, our findings indicate that blocking ALCAM or DICAM are two ways to restrict different pathogenic cells access to the CNS during neuroinflammation and thus potentially to reduce the severity and worsening of a disease like MS.

Page generated in 0.0633 seconds