• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LS-Dyna for Crashworthiness of Composite Structures

Chatla, Priyanjali January 2012 (has links)
No description available.
2

Advanced Three-dimensional Nonlinear Analysis of Reinforced Concrete Structures Subjected to Fire and Extreme Loads

ElMohandes, Fady 05 March 2014 (has links)
With the rise in hazards that structures are potentially subjected to these days, ranging from pre-contemplated terror attacks to accidental and natural disasters, safeguarding structures against such hazards has increasingly become a common design requirement. The extreme loading conditions associated with these hazards renders the concept of imposing generalized codes and standards guidelines for structural design unfeasible. Therefore, a general shift towards performance-based design is starting to dominate the structural design field. This study introduces a powerful structural analysis tool for reinforced concrete structures, possessing a high level of reliability in handling a wide range of typical and extreme loading conditions in a sophisticated structural framework. VecTor3, a finite element computer program previously developed at the University of Toronto for nonlinear analysis of three-dimensional reinforced concrete structures employing the well-established Modified Compression Field Theory (MCFT), has been further developed to serve as the desired tool. VecTor3 is extended to include analysis capabilities for extreme loading conditions, advanced reinforced concrete mechanisms, and new material types. For extreme loading conditions, an advanced coupled heat and moisture transfer algorithm is implemented in VecTor3 for the analysis of reinforced concrete structures subjected to fire. This algorithm not only calculates the transient temperature through the depth of concrete members, but also calculates the elevated pore pressure in concrete, which enables the prediction of the occurrence of localized thermally-induced spalling. Dynamic loading conditions are also extended to include seismic loading, in addition to blast and impact loading. Advancing the mechanisms considered, VecTor3 is developed to include the Disturbed Stress Field Model (DSFM), dowel action and buckling of steel reinforcement bars, geometric nonlinearity effects, strain rate effects for dynamic loading conditions, and the deterioration of mechanical properties at elevated temperatures for fire loading conditions. Finally, the newly-developed Simplified Diverse Embedment Model (SDEM) is implemented in VecTor3 to add analysis capability for steel fibre-reinforced concrete (SFRC). Various analyses covering a wide range of different structural members and loading conditions are carried out using VecTor3, showing good agreement with experimental results available in the literature. These analyses verify the reliability of the models, mechanisms, and algorithms incorporated in VecTor3.
3

Advanced Three-dimensional Nonlinear Analysis of Reinforced Concrete Structures Subjected to Fire and Extreme Loads

ElMohandes, Fady 05 March 2014 (has links)
With the rise in hazards that structures are potentially subjected to these days, ranging from pre-contemplated terror attacks to accidental and natural disasters, safeguarding structures against such hazards has increasingly become a common design requirement. The extreme loading conditions associated with these hazards renders the concept of imposing generalized codes and standards guidelines for structural design unfeasible. Therefore, a general shift towards performance-based design is starting to dominate the structural design field. This study introduces a powerful structural analysis tool for reinforced concrete structures, possessing a high level of reliability in handling a wide range of typical and extreme loading conditions in a sophisticated structural framework. VecTor3, a finite element computer program previously developed at the University of Toronto for nonlinear analysis of three-dimensional reinforced concrete structures employing the well-established Modified Compression Field Theory (MCFT), has been further developed to serve as the desired tool. VecTor3 is extended to include analysis capabilities for extreme loading conditions, advanced reinforced concrete mechanisms, and new material types. For extreme loading conditions, an advanced coupled heat and moisture transfer algorithm is implemented in VecTor3 for the analysis of reinforced concrete structures subjected to fire. This algorithm not only calculates the transient temperature through the depth of concrete members, but also calculates the elevated pore pressure in concrete, which enables the prediction of the occurrence of localized thermally-induced spalling. Dynamic loading conditions are also extended to include seismic loading, in addition to blast and impact loading. Advancing the mechanisms considered, VecTor3 is developed to include the Disturbed Stress Field Model (DSFM), dowel action and buckling of steel reinforcement bars, geometric nonlinearity effects, strain rate effects for dynamic loading conditions, and the deterioration of mechanical properties at elevated temperatures for fire loading conditions. Finally, the newly-developed Simplified Diverse Embedment Model (SDEM) is implemented in VecTor3 to add analysis capability for steel fibre-reinforced concrete (SFRC). Various analyses covering a wide range of different structural members and loading conditions are carried out using VecTor3, showing good agreement with experimental results available in the literature. These analyses verify the reliability of the models, mechanisms, and algorithms incorporated in VecTor3.
4

Análise teórico-experimental do comportamento de concretos reforçados com fibras de aço quando submetidos a cargas de impacto / A numerical and experimental analysis of steel fiber reinforced concretes subjected to impact loads

Garcez, Estela Oliari January 2005 (has links)
Quando o concreto é submetido a ações especiais, como cargas cíclicas ou ação de cargas de impacto, modificações em sua composição são necessárias, já que o concreto não apresenta desempenho satisfatório à tração, o que compromete o seu comportamento frente à ação de cargas dinâmicas. Uma alternativa para amenizar esta deficiência consiste em adicionar fibras ao concreto. Estas atuam como reforços à tração, transformando a matriz cimentícia, tipicamente frágil, em um material que apresenta boa resistência residual após a fissuração. Buscando colaborar na avaliação da eficiência de diferentes tipos de fibras, o presente trabalho analisa o comportamento de concretos com fibras de aço, submetidos ao impacto, avaliando a influência do fator de forma, do comprimento e do teor de fibras, assim como do tamanho do agregado. São ainda analisados os efeitos da incorporação de fibras na resistência à compressão, na resistência à tração por compressão diametral, no módulo de elasticidade e na tenacidade dos compósitos. Adicionalmente, é executada uma comparação entre os resultados experimentais e os derivados de um esquema de modelagem da situação de impacto através do uso do método de elementos discretos. Buscou-se, através da modelagem teórica, executar um mapeamento dos danos, provocados por cargas de impacto incrementais, ao longo do tempo, bem como determinar as energias necessárias para levar as placas até a ruptura. Os resultados indicam que a incorporação de fibras de aço não consegue retardar o aparecimento da primeira fissura, mas aumenta significativamente a tenacidade dos compósitos. Fibras mais longas e com maior fator de forma tendem a ser mais eficientes, desde que se supere um teor de fibras mínimo, que neste trabalho ficou em torno de 100.000 fibras/m3, para fibras longas (50-60 mm) e de 400.000 fibras/m3, para fibras curtas, cuja ancoragem é menos eficiente. O método de teste de impacto por queda de esfera se mostrou adequado e sensível, porém o esquema de modelagem numérica testado necessita ser refinado para permitir uma adequada simulação do comportamento de concretos com fibras. / When submitted to special loading patterns, derived from dynamical actions such as cyclic or impact loads, concrete elements need to be reinforced, in order to resist the tensile stresses. A feasible alternative, in such cases, is to incorporate fibers in the concrete matrix. The fibers act as a tensile reinforcement, transforming the fragile cement matrix into a composite with significant post-cracking residual strength. In order to contribute with the data collection about the efficiency of different fiber types, the present research work presents an analysis of the behavior of steel fiber reinforced concretes subjected to impact loads. The work investigates the influences of changes in the shape factor, length and amount of fibers. The effects of these combinations on other basic properties of the composites, such as compression strength, split cylinder tensile strength, Young’s modulus and tenacity is also measured. Additionally, a comparison is made between the experimental results from the impact tests and the estimates obtained from a theoretical model that uses the discrete element method (DEM). This theoretical approach aimed to determine if the model was able to simulate the damage evolution over time generated by the increasing impacts loads, as well as to determine the total energy necessary to crack and break the specimens. The results obtained pointed out that the introduction of steel fibers does not affect the energy for the first crack but increases significantly the tenacity of the composite. Longer fibers, with greater shape factors, tend to be more efficient, provided that the fiber content is sufficiently high. The minimum recommended fiber content, according to the data from this research, may be around 100.000 fibers/m3, for longer fibers (50-60 mm). Or around 400.000 fibers/m3, for shorter fibers, which are not so efficient in terms of anchorage. The impact test method developed was considered adequate, being sensitive to the phenomenon and providing reliable data. The DEM model, however, needs to be refined to be able to deal with fiber concrete composites.
5

Análise teórico-experimental do comportamento de concretos reforçados com fibras de aço quando submetidos a cargas de impacto / A numerical and experimental analysis of steel fiber reinforced concretes subjected to impact loads

Garcez, Estela Oliari January 2005 (has links)
Quando o concreto é submetido a ações especiais, como cargas cíclicas ou ação de cargas de impacto, modificações em sua composição são necessárias, já que o concreto não apresenta desempenho satisfatório à tração, o que compromete o seu comportamento frente à ação de cargas dinâmicas. Uma alternativa para amenizar esta deficiência consiste em adicionar fibras ao concreto. Estas atuam como reforços à tração, transformando a matriz cimentícia, tipicamente frágil, em um material que apresenta boa resistência residual após a fissuração. Buscando colaborar na avaliação da eficiência de diferentes tipos de fibras, o presente trabalho analisa o comportamento de concretos com fibras de aço, submetidos ao impacto, avaliando a influência do fator de forma, do comprimento e do teor de fibras, assim como do tamanho do agregado. São ainda analisados os efeitos da incorporação de fibras na resistência à compressão, na resistência à tração por compressão diametral, no módulo de elasticidade e na tenacidade dos compósitos. Adicionalmente, é executada uma comparação entre os resultados experimentais e os derivados de um esquema de modelagem da situação de impacto através do uso do método de elementos discretos. Buscou-se, através da modelagem teórica, executar um mapeamento dos danos, provocados por cargas de impacto incrementais, ao longo do tempo, bem como determinar as energias necessárias para levar as placas até a ruptura. Os resultados indicam que a incorporação de fibras de aço não consegue retardar o aparecimento da primeira fissura, mas aumenta significativamente a tenacidade dos compósitos. Fibras mais longas e com maior fator de forma tendem a ser mais eficientes, desde que se supere um teor de fibras mínimo, que neste trabalho ficou em torno de 100.000 fibras/m3, para fibras longas (50-60 mm) e de 400.000 fibras/m3, para fibras curtas, cuja ancoragem é menos eficiente. O método de teste de impacto por queda de esfera se mostrou adequado e sensível, porém o esquema de modelagem numérica testado necessita ser refinado para permitir uma adequada simulação do comportamento de concretos com fibras. / When submitted to special loading patterns, derived from dynamical actions such as cyclic or impact loads, concrete elements need to be reinforced, in order to resist the tensile stresses. A feasible alternative, in such cases, is to incorporate fibers in the concrete matrix. The fibers act as a tensile reinforcement, transforming the fragile cement matrix into a composite with significant post-cracking residual strength. In order to contribute with the data collection about the efficiency of different fiber types, the present research work presents an analysis of the behavior of steel fiber reinforced concretes subjected to impact loads. The work investigates the influences of changes in the shape factor, length and amount of fibers. The effects of these combinations on other basic properties of the composites, such as compression strength, split cylinder tensile strength, Young’s modulus and tenacity is also measured. Additionally, a comparison is made between the experimental results from the impact tests and the estimates obtained from a theoretical model that uses the discrete element method (DEM). This theoretical approach aimed to determine if the model was able to simulate the damage evolution over time generated by the increasing impacts loads, as well as to determine the total energy necessary to crack and break the specimens. The results obtained pointed out that the introduction of steel fibers does not affect the energy for the first crack but increases significantly the tenacity of the composite. Longer fibers, with greater shape factors, tend to be more efficient, provided that the fiber content is sufficiently high. The minimum recommended fiber content, according to the data from this research, may be around 100.000 fibers/m3, for longer fibers (50-60 mm). Or around 400.000 fibers/m3, for shorter fibers, which are not so efficient in terms of anchorage. The impact test method developed was considered adequate, being sensitive to the phenomenon and providing reliable data. The DEM model, however, needs to be refined to be able to deal with fiber concrete composites.
6

Análise teórico-experimental do comportamento de concretos reforçados com fibras de aço quando submetidos a cargas de impacto / A numerical and experimental analysis of steel fiber reinforced concretes subjected to impact loads

Garcez, Estela Oliari January 2005 (has links)
Quando o concreto é submetido a ações especiais, como cargas cíclicas ou ação de cargas de impacto, modificações em sua composição são necessárias, já que o concreto não apresenta desempenho satisfatório à tração, o que compromete o seu comportamento frente à ação de cargas dinâmicas. Uma alternativa para amenizar esta deficiência consiste em adicionar fibras ao concreto. Estas atuam como reforços à tração, transformando a matriz cimentícia, tipicamente frágil, em um material que apresenta boa resistência residual após a fissuração. Buscando colaborar na avaliação da eficiência de diferentes tipos de fibras, o presente trabalho analisa o comportamento de concretos com fibras de aço, submetidos ao impacto, avaliando a influência do fator de forma, do comprimento e do teor de fibras, assim como do tamanho do agregado. São ainda analisados os efeitos da incorporação de fibras na resistência à compressão, na resistência à tração por compressão diametral, no módulo de elasticidade e na tenacidade dos compósitos. Adicionalmente, é executada uma comparação entre os resultados experimentais e os derivados de um esquema de modelagem da situação de impacto através do uso do método de elementos discretos. Buscou-se, através da modelagem teórica, executar um mapeamento dos danos, provocados por cargas de impacto incrementais, ao longo do tempo, bem como determinar as energias necessárias para levar as placas até a ruptura. Os resultados indicam que a incorporação de fibras de aço não consegue retardar o aparecimento da primeira fissura, mas aumenta significativamente a tenacidade dos compósitos. Fibras mais longas e com maior fator de forma tendem a ser mais eficientes, desde que se supere um teor de fibras mínimo, que neste trabalho ficou em torno de 100.000 fibras/m3, para fibras longas (50-60 mm) e de 400.000 fibras/m3, para fibras curtas, cuja ancoragem é menos eficiente. O método de teste de impacto por queda de esfera se mostrou adequado e sensível, porém o esquema de modelagem numérica testado necessita ser refinado para permitir uma adequada simulação do comportamento de concretos com fibras. / When submitted to special loading patterns, derived from dynamical actions such as cyclic or impact loads, concrete elements need to be reinforced, in order to resist the tensile stresses. A feasible alternative, in such cases, is to incorporate fibers in the concrete matrix. The fibers act as a tensile reinforcement, transforming the fragile cement matrix into a composite with significant post-cracking residual strength. In order to contribute with the data collection about the efficiency of different fiber types, the present research work presents an analysis of the behavior of steel fiber reinforced concretes subjected to impact loads. The work investigates the influences of changes in the shape factor, length and amount of fibers. The effects of these combinations on other basic properties of the composites, such as compression strength, split cylinder tensile strength, Young’s modulus and tenacity is also measured. Additionally, a comparison is made between the experimental results from the impact tests and the estimates obtained from a theoretical model that uses the discrete element method (DEM). This theoretical approach aimed to determine if the model was able to simulate the damage evolution over time generated by the increasing impacts loads, as well as to determine the total energy necessary to crack and break the specimens. The results obtained pointed out that the introduction of steel fibers does not affect the energy for the first crack but increases significantly the tenacity of the composite. Longer fibers, with greater shape factors, tend to be more efficient, provided that the fiber content is sufficiently high. The minimum recommended fiber content, according to the data from this research, may be around 100.000 fibers/m3, for longer fibers (50-60 mm). Or around 400.000 fibers/m3, for shorter fibers, which are not so efficient in terms of anchorage. The impact test method developed was considered adequate, being sensitive to the phenomenon and providing reliable data. The DEM model, however, needs to be refined to be able to deal with fiber concrete composites.
7

Modelling of wave impact on offshore structures

Abdolmaleki, Kourosh January 2007 (has links)
[Truncated abstract] The hydrodynamics of wave impact on offshore structures is not well understood. Wave impacts often involve large deformations of water free-surface. Therefore, a wave impact problem is usually combined with a free-surface problem. The complexity is expanded when the body exposed to a wave impact is allowed to move. The nonlinear interactions between a moving body and fluid is a complicated process that has been a dilemma in the engineering design of offshore and coastal structures for a long time. This thesis used experimental and numerical means to develop further understanding of the wave impact problems as well as to create a numerical tool suitable for simulation of such problems. The study included the consideration of moving boundaries in order to include the coupled interactions of the body and fluid. The thesis is organized into two experimental and numerical parts. There is a lack of benchmarking experimental data for studying fluid-structure interactions with moving boundaries. In the experimental part of this research, novel experiments were, therefore, designed and performed that were useful for validation of the numerical developments. By considering a dynamical system with only one degree of freedom, the complexity of the experiments performed was minimal. The setup included a plate that was attached to the bottom of a flume via a hinge and tethered by two springs from the top one at each side. The experiments modelled fluid-structure interactions in three subsets. The first subset studied a highly nonlinear decay test, which resembled a harsh wave impact (or slam) incident. The second subset included waves overtopping on the vertically restrained plate. In the third subset, the plate was free to oscillate and was excited by the same waves. The wave overtopping the plate resembled the physics of the green water on fixed and moving structures. An analytical solution based on linear potential theory was provided for comparison with experimental results. ... In simulation of the nonlinear decay test, the SPH results captured the frequency variation in plate oscillations, which indicated that the radiation forces (added mass and damping forces) were calculated satisfactorily. In simulation of the nonlinear waves, the waves progressed in the flume similar to the physical experiments and the total energy of the system was conserved with an error of 0.025% of the total initial energy. The wave-plate interactions were successfully modelled by SPH. The simulations included wave run-up and shipping of water for fixed and oscillating plate cases. The effects of the plate oscillations on the flow regime are also discussed in detail. The combination of experimental and numerical investigation provided further understanding of wave impact problems. The novel design of the experiments extended the study to moving boundaries in small scale. The use of SPH eliminated the difficulties of dealing with free-surface problems so that the focus of study could be placed on the impact forces on fixed and moving bodies.

Page generated in 0.0534 seconds