Spelling suggestions: "subject:"impasse surface"" "subject:"empasse surface""
1 |
Superfícies de impasse e bifurcações de sistemas forçadosSilva, Lucas Casanova [UNESP] 06 March 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-03-06Bitstream added on 2014-06-13T20:27:25Z : No. of bitstreams: 1
silva_lc_me_sjrp.pdf: 396347 bytes, checksum: ca82fc898986cf42e0fa521d8f9ab63c (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho, estudamos as famíılias de sistemas forçados com superfície de impasse regular, as formas normais de seus pontos “típicos”bem como seus retratos de fase. Vemos ainda alguns resultados sobre a genericidade desses pontos e a estabilidade estrutural de um sistema forçado. Abordamos o tema de uma forma simples: apresentamos o que é um sistema forçado e uma família de sistemas forçados para depois estudar as formas normais de seus pontos “típicos” através de dois campos de direções, os quais se tornam fundamentais para o assunto. Utilizamos o Teorema de Peixoto (adaptado para este assunto) como norte para dar as características de um sistema forçado estruturalmente estável. No capítulo 3, damos a estratificação da superfície de impasse e, como resultado final, vemos que esta estratificação é genérica (no conjunto de todas as famílias de sistemas forçados). / In this work we study the families of constrained systems with regular impasse surface, the normal forms of its “typical”points and the respectively phase portrait. We see some results about the genericity of these points and the structural stability of a constrained system. We broach the theme in a simple way: we introduce a constrained system and a family of a constrained systems, and so, we study the normal forms of its “typical”points through two line fields, which become essential for the subject. We use the Peixoto’s Theorem (adapted for this subject) to characterize a structural stable of constrained systems. In the chapter 3, we make a stratification of the impasse surface and, as a last result, we see that stratification is genericity (in the set of all families of constrained systems).
|
2 |
Superfícies de impasse e bifurcações de sistemas forçados /Silva, Lucas Casanova. January 2009 (has links)
Orientador: Paulo Ricardo da Silva / Banca: João Carlos da Rocha Medrado / Banca: João Carlos Ferreira Costa / Resumo: Neste trabalho, estudamos as famíılias de sistemas forçados com superfície de impasse regular, as formas normais de seus pontos "típicos"bem como seus retratos de fase. Vemos ainda alguns resultados sobre a genericidade desses pontos e a estabilidade estrutural de um sistema forçado. Abordamos o tema de uma forma simples: apresentamos o que é um sistema forçado e uma família de sistemas forçados para depois estudar as formas normais de seus pontos "típicos" através de dois campos de direções, os quais se tornam fundamentais para o assunto. Utilizamos o Teorema de Peixoto (adaptado para este assunto) como norte para dar as características de um sistema forçado estruturalmente estável. No capítulo 3, damos a estratificação da superfície de impasse e, como resultado final, vemos que esta estratificação é genérica (no conjunto de todas as famílias de sistemas forçados). / Abstract:In this work we study the families of constrained systems with regular impasse surface, the normal forms of its "typical"points and the respectively phase portrait. We see some results about the genericity of these points and the structural stability of a constrained system. We broach the theme in a simple way: we introduce a constrained system and a family of a constrained systems, and so, we study the normal forms of its "typical"points through two line fields, which become essential for the subject. We use the Peixoto's Theorem (adapted for this subject) to characterize a structural stable of constrained systems. In the chapter 3, we make a stratification of the impasse surface and, as a last result, we see that stratification is genericity (in the set of all families of constrained systems). / Mestre
|
Page generated in 0.0509 seconds