Spelling suggestions: "subject:"impingement"" "subject:"impingements""
81 |
Thermal Atomization Due to Boiling During Droplet Impingement on Superhydrophobic SurfacesEmerson, Preston Todd 01 January 2020 (has links)
Superhydrophobic (SH) surfaces are characterized by their extraordinary water repellent qualities. When water comes in contact with these surfaces, it beads up and rolls around. This phenomenon is due partially to surface chemistry which promotes weak adhesive forces between liquid and solid. However, micro- and nanoscale surface roughness also plays a crucial role by trapping air beneath the liquid, reducing liquid-solid contact. Many advantages of these surfaces have been identified, including drag reduction and self-cleaning properties, and the body of research regarding them has grown rapidly over the past few decades.This thesis is concerned with water droplets impinging superheated, superhydrophobic surfaces. In these scenarios, boiling is common in the droplet, producing vapor bubbles which burst through the droplet lamella and cause a spray of miniscule water particles known as thermal atomization. The work contained in this thesis uses an image processing technique to quantify trends in thermal atomization intensity during droplet impingement scenarios for a range of surface microstructure configurations, superheat temperatures, and Weber numbers.In one study, droplet impingement on a smooth hydrophobic and three post-patterned SH surfaces of similar solid fraction is considered. In general, as pitch (center-to-center distance between posts) increases, atomization intensity decreases. This is attributed to the enhanced ability for vapor escape beneath the droplet that is present for wider pitch surfaces. Atomization intensity increases with increasing Weber number for each of the surfaces considered. Additionally, the Leidenfrost point is found to increase with increasing Weber number and decreasing pitch.Next, thermal atomization on SH surfaces with two distinct microstructure configurations is considered: square posts (which allow vapor escape between structures) and square holes (which block vapor escape). Tests are done for each configuration with varying microstructure height, and structure spacing and solid fraction are held constant. Comparing the two configurations at each structure height and Weber number, the post-patterned surfaces suppress atomization for a large number of scenarios compared to the hole surfaces, supporting the theory that vapor escape through microstructures suppresses atomization. Microstructure height significantly affects trends in atomization intensity with surface temperature and Weber number. The LFP is seen to decrease with increasing height.
|
82 |
Experimental Investigation of Boiling Heat Transfer Under an Impinging Water JetAbdelfattah, Mahmoud January 2022 (has links)
The current study is an experimental and analytical investigation of JIB within the nucleate and transition boiling regimes. This study focuses on studying JIB within the stagnation zone of a free water jet. An experimental setup has been designed and built at the Thermal Processing Laboratory (TPL) with the capability of carrying out boiling experiments at heat fluxes up to 12 MW/m2. The JIB curves have been obtained under steady-state conditions for a wide range of jet conditions, higher than those considered during previous JIB studies. The effect of jet velocity, up to 3.8 m/s, and degree of subcooling, up to 49 °C, on the JIB curve has been studied. The results showed that both jet velocity and degree of subcooling have a weak effect on the nucleate boiling regime and significantly affect the transition boiling regime. Bubble dynamics under the impinging jet within the nucleate boiling regime and the stability of the vapor layer within the transition boiling regime have been investigated. An analytical mechanistic model, based on force balance and thermal balance equations, has been developed to predict the bubble growth rate and the BDD. The developed model was validated using current experimental data. The model gave a relative deviation of 17.8 %. Results of the mechanistic model within the stagnation zone showed that, amongst the three heat transfer mechanisms that affect bubble growth (i.e., the microlayer evaporation, the heat from the superheated layer, the convection heat loss to subcooled liquid), the microlayer evaporation is the most significant contributor to the rate of bubble growth. The current work conducted within the transition boiling regime was focused on the determination of the total wall heat flux within the stagnation zone, both experimentally and analytically. Steady-state experiments have been carried out during which the vapor layer stability was examined. The vapor layer breakup frequency was measured using a fiber-optic probe. Experiments were conducted at a jet velocity of 1 m/s and degrees of subcooling between 11 and 49 ºC. / Thesis / Doctor of Philosophy (PhD)
|
83 |
Postural Control Task Performance of Individuals with Femoroacetabular Impingement SyndromeMiller, Meghan Maume 25 August 2017 (has links)
No description available.
|
84 |
MAGNETICALLY ACTUATED PHYSICAL IMPINGEMENT FOR ELUTION OF ARTIFICIAL MUCOUS FROM A SWABBanik, Shubham January 2017 (has links)
Swabs are used as a collecting device for many biological samples and its complete elution is a desired step for clinical and forensic diagnostics. Swabs are made of cotton, rayon, polyurethane, foam or polyester and come in a spun or flocked-tipped format. They are used to extract biological samples from a patient, which includes saliva, mucous, blood, semen or other body fluids. These body fluids then undergo the process of elution where the collected samples are extracted from the swabs into an elution fluid. Apart from biological samples, the importance of swabbing and elution also becomes more evident in forensics, where the concentration of available cells is very low. One such example is rape kit analysis. Another field of application is the capture and release of bacterial spores from environmental contact surfaces and food surfaces, which also indicate the use of swabs in non-biological areas.
The recovery of the biological material from the fibre matrix of the swab has a significant influence on diagnostic sensitivity of any assay. The recovery of micro-organisms from a matrix of swab fibres depends on the nature of the body fluid, the type of the swab fibres and the process of elution. Various methods are used to elute samples from swab, including the use of chemicals to digest the cotton fibres to remove intact cells (~20% recovery), centrifugation (~58% recovery), piezoelectric vibration or pressurized fluid-flow (~60% recovery). These methods are either passive (chemical elution) or provides a gentle tangential shear force through associated flow (centrifugation, piezoelectric and pressurized flow), resulting in a low recovery. The success of all the downstream processes of elution, like lysis, DNA amplification and detection, depends on the number of cells eluted from the swab fibre matrix. Hence, the recovery efficiency is an important parameter for determining the performance of elution, and higher value of the same is desired for most diagnostic assays.
This thesis reports a magnetically-actuated physical impingement method for elution and recovery of artificial sputum samples from cotton fibres. A device has been fabricated to induce a rotating magnetic field on smaller magnetic particles in a vial for striking the swab within a confined gap. Elution of samples from the swab using this device was demonstrated using artificial sputum prepared by mixing 2% methyl cellulose in deionised water, loaded with fluorescent-tagged polystyrene beads and Escherichia coli bacteria at various concentrations. The recovery efficiency was found to increase with both rotational speed and elution time, but plateaus after 400 RPM and 120s respectively. At higher concentration of polystyrene beads, a maximum recovery of ~85% was achieved at 5x108 particles/ml sample. With lower concentration (106 particles/ml), the maximum efficiency (~93%) was found to be almost twice of the static condition (46.7%), while using only 620µL of elution volume. Similar trends were found in experiments with artificial sputum loaded with E. coli cells, and the maximum recovery was found to be ~90% at 105 CFU/ml concentration.
The robust design and smaller size allows the device to be used in different clinical, forensic and laboratory settings. Also, due to cheaper means of manufacturing and assembly, the vials and smaller magnets can be discarded after every experiment, thereby preventing contamination. The device is most suitable for recovering cells from different body fluids like saliva, mucous, semen or blood, absorbed by the swab fibres. Apart from body fluids samples, swabs holding biological agents from environmental surfaces can also be eluted. A higher recovery at lower concentration facilitates the use of this device where the available analyte concentration is low. / Thesis / Master of Applied Science (MASc)
|
85 |
Design of Gages for Direct Skin Friction Measurements in Complex Turbulent Flows with Shock Impingement CompensationRolling, August Jameson 05 July 2007 (has links)
This research produced a new class of skin friction gages that measures wall shear even in shock environments. One test specimen separately measured wall shear and variable-pressure induced moment. Through the investigation of available computational modeling methods, techniques for accurately predicting gage physical responses were developed. The culmination of these model combinations was a design optimization procedure. This procedure was applied to three disparate test conditions: 1) short-duration, high-enthalpy testing, 2) blow-down testing, and 3) flight testing. The resulting optimized gage designs were virtually tested against each set of nominal load conditions. The finalized designs each successfully met their respective test condition constraints while maximizing strain output due to wall shear.
These gages limit sources of apparent strain: inertia, temperature gradient, and uniform pressure. A unique use of bellows provided a protective shroud for surface strain gages. Oil fill provided thermal and dynamic damping while eliminating uniform pressure as a source of output voltage. Two Wheatstone bridge configurations were developed to minimize temperature effects first from temperature gradient and then from spatially varying heat flux induced gradient. An inertia limiting technique was developed that parametrically investigated mass and center of gravity impact on strain output.
Multiple disciplinary computational simulations of thermal, dynamic, shear, moment, inertia, and instrumentation interaction were developed. Examinations of instrumentation error, settling time, filtering, multiple input dynamic response, and strain gage placement to avoid thermal gradient were conducted. Detailed mechanical drawings for several gages were produced for fabrication and future testing. / Ph. D.
|
86 |
Pneumatic Particulate Collection System for an Unmanned Ground Sampling RobotCouch, Michael Robert 10 January 2011 (has links)
The design of unmanned material collection systems requires a great deal of foresight and innovative design on the engineer's part in order to produce solutions to problems operators may encounter in the field. In this thesis, the development of a particulate collection system for use onboard a lightweight, helicopter deployable ground robot is presented.
The Unmanned Systems Laboratory at Virginia Tech is developing a ground sampling robot to be carried in the payload pod of a Yamaha RMAX unmanned aerial vehicle. The robot's ultimate objective is to collect material samples from a hazardous environment. The pneumatic system presented here is a novel design developed to collect particulate without draining the resources of the robot. Vacuum samplers have been developed in the past, but they are large and cumbersome and require large amounts of electrical energy to operate. The pneumatic particulate collection system utilizes the kinetic energy from the release of compressed air to transport the particulate to a collection chamber.
Consideration is given to the drop in pressure of the air supply tank as it empties, and a feasible air supply tank design is presented. Two forms of particulate collection are investigated experimentally: jet impingement and particle entrainment (i.e. steep attack angle and parallel flow). Turbulent, free jet characteristics and critical velocities of particles are studied. Ultimately, a final design is presented that effectively collects particulate material from the top 5/8" layer of both thick and thin particle beds. / Master of Science
|
87 |
Interplay of Water Chemistry and Entrained Particulates in Erosion Corrosion of Copper and Nonleaded Alloys in Potable Water SystemsRoy, Siddhartha 26 March 2018 (has links)
Erosion corrosion of plumbing materials in domestic water systems is a complex phenomenon driven by water quality, hydrodynamic and electrochemical factors. Erosion corrosion accounts for over a third of copper hot water system failures in the U.S., hundreds of millions in damage, and may be expected to increase with newer Legionella control strategies including increased use of water recirculation and high temperatures. Additionally, some nonleaded alloys introduced after the passage of a new federal law restricting lead content in plumbing, have been anecdotally implicated as failing prematurely from erosion corrosion compared to traditional alloys.
This dissertation includes 1) a critical review of the literature, 2) investigation of a recent rapid erosion corrosion failure in a large building plumbing system, 3) replication of this phenomena in copper and nonleaded brass in laboratory studies, and 4) evaluation of 12 nonleaded alloys against conventional leaded brass. Current plumbing codes and guidelines to prevent erosion corrosion were found to be widely inconsistent and lacking scientific evidence. Large-scale recirculating hot water pipe-loop experiments demonstrated that an aggressive hard water with entrained aragonite (CaCO3) particles could cause fully penetrative failures (i.e., leaks) in brand new copper pipe and nonleaded brass fittings in just 3-49 days. This represents the first time rapid erosion corrosion failures have ever been replicated in the laboratory under conditions similar to those encountered in practice. The entrained particulates dramatically accelerated attack on metals, especially at pipe bends. In general, lowering pH, increasing flow velocity, increasing temperatures, entrainment of particles (of bigger sizes), and addition of chlorine disinfectant increased erosion corrosion rates. These results scientifically proved that hard waters are not inherently less aggressive than soft water, and in fact if CaCO3 solids form they can be much more aggressive. Finally, cavitation and erosion corrosion resistance of 12 nonleaded alloys was evaluated against leaded brass; stainless steels demonstrated superior performance, silicon brass had the greatest susceptibility and remaining alloys were in the middle. This performance data can aid decision making regarding choice of alloys for various water applications.
Our work over the years, including involvement in the Flint Water Crisis, demonstrated that practicing trustworthy science as a public good requires commitment to scientific rigor, truth-seeking, managing conflicts of interest, and comprehensible evidence-based science communication. Critical problems in 21st century public science were highlighted including perverse incentives, misconduct, postmodernist "science anarchist" thought, and ineffectiveness of U.S. water utilities in communicating tap water safety to the American public. / Ph. D.
|
88 |
A Numerical Study of Supersonic Rectangular Jet Impingement and Applications to Cold Spray TechnologyAkhtar, Kareem 09 January 2015 (has links)
Particle-laden supersonic jets impinging on a flat surface are of interest to cold gas-dynamic spray technology. Solid particles are propelled to a high velocity through a convergent-divergent nozzle, and upon impact on a substrate surface, they undergo plastic deformation and adhere to the surface. For given particle and substrate materials, particle velocity and temperature at impact are the primary parameters that determine the success of particle deposition. Depending on the particle diameter and density, interactions of particles with the turbulent supersonic jet and the compressed gas region near the substrate surface can have significant effects on particle velocity and temperature. Unlike previous numerical simulations of cold spray, in this dissertation we track solid particles in the instantaneous turbulent fluctuating flow field from the nozzle exit to the substrate surface. Thus, we capture the effects of particle-turbulence interactions on particle velocity and temperature at impact.
The flow field is obtained by direct numerical simulations of a supersonic rectangular particle-laden air jet impinging on a flat substrate. An Eulerian-Lagrangian approach with two-way coupling between solid particles and gas phase is used. Unsteady three-dimensional Navier-Stokes equations are solved using a six-order compact scheme with a tenth-order compact filter combined with WENO dissipation, almost everywhere except in a region around the bow shock where a fifth-order WENO scheme is used. A fourth-order low-storage Runge-Kutta scheme is used for time integration of gas dynamics equations simultaneously with solid particles equations of motion and energy equation for particle temperature. Particles are tracked in instantaneous turbulent jet flow rather than in a mean flow that is commonly used in the previous studies. Supersonic jets for air and helium at Mach number 2.5 and 2.8, respectively, are simulated for two cases for the standoff distance between the nozzle exit and the substrate. Flow structures, mean flow properties, particles impact velocity and particles deposition efficiency on a flat substrate surface are presented. Different grid resolutions are tested using 2, 4 and 8 million points. Good agreement between DNS results and experimental data is obtained for the pressure distribution on the wall and the maximum Mach number profile in wall jet. Probability density functions for particle velocity and temperature at impact are presented. Deposition efficiency for aluminum and copper particles of diameter in the range 1 micron to 40 microns is calculated.
Instantaneous flow fields for the two standoff distances considered exhibit different flow characteristics. For large standoff distance, the jet is unsteady and flaps both for air (Mach number 2.5) and for helium (Mach number 2.8), in the direction normal to the large cross-section of the jet. Linear stability analysis of the mean jet profile validates the oscillation frequency observed in the present numerical study. Available experimental data also validate oscillation frequency. After impingement, the flow re-expands from the compressed gas region into a supersonic wall jet. The pressure on the wall in the expansion region is locally lower than ambient pressure. Strong bow shock only occurs for small standoff distance. For large standoff distance multiple/oblique shocks are observed due to the flapping of the jet.
The one-dimensional model based on isentropic flow calculations produces reliable results for particle velocity and temperature. It is found that the low efficiency in the low-pressure cold spray (LPCS) compared to high-pressure cold spray (HPCS) is mainly due to low temperature of the particles at the exit of the nozzle. Three-dimensional simulations show that small particles are readily influenced by the large-scale turbulent structures developing on jet shear layers, and they drift sideways. However, large particles are less influenced by the turbulent flow. Particles velocity and temperature are affected by the compressed gas layer and remain fairly constant in the jet region. With a small increase in the particles initial temperature, the deposition efficiency in LPCS can be maximized. There is an optimum particle diameter range for maximum deposition efficiency. / Ph. D.
|
89 |
Cooling techniques for advanced gas turbinesKersten, Stephanie 01 January 2008 (has links)
Gas turbines are widely used for power generation, producing megawatts of usable energy, but consume fossil fuels in order to do so. With gas prices on the rise, all eyes have turned to operating cost and fuel efficiency. To increase efficiency, manufactures raise the temperature of the gas that is combusted. This temperature is high above the melting point of the turbine components. In order for the gas turbine to work under these conditions, its parts must be protected. This study focuses on two aspects of cooling for turbine components. Over the last decades, researchers have investigated many aspects of film cooling, The present study investigates the impact of the stagnation region created by a downstream airfoil on endwall film cooling effectiveness with and without the presence of wake. Experimental measurements are presented for a single row of cylindrical holes inclined at 35° with hole length to diameter ratio, LID= 7.5, pitch to diameter ratio, Pl/D = 3 with a constant density ratio of 1.26, and with nitrogen as the coolant. Twelve different configurations were studied. The airfoil was positioned at X/D equal to 6.35, 12.7, and 25.4. A wake plate was added upstream of the film holes at -12.7 and -50.8 X/D. The effect of stagnation and wake was combined by placing both the airfoil and the wake plate in the test section, combining all positions of each. Baseline cases for the cooling holes alone, and the cooling holes with the airfoil and wake individually were compared to the combined effects. The experimental data shows that as the airfoil stagnation region inhibits film cooling close to the airfoil, and strong wake decreases film effectiveness. With both stagnation region and wake combined, an overall decrease in film cooling performance is observed. Higher blowing ratio increase lateral spreading of the jet promoting jet to jet interaction and mainstream interaction enhancing mixing. The presence of wake promotes jet mixing with the mainstream resulting in lower film cooling effectiveness. High performance turbine airfoils are typically cooled with a combination of internal cooling channels and impingement/film cooling. In such applications, the jets impinge against a target surface, and then exit along the channel formed by the jet plate, target plate, and side walls. Local convection coefficients are the result of both the jet impact, as well as the channel flow produced from the exiting jets. Numerous studies have explored the effects of jet array and channel configurations on both target and jet plate heat transfer coefficients. However, little work has been done in examining effects of height variation and heating on all channel walls, in which both target wall and side wall data is taken, as was neglected by previous literature. This study examines the local and averaged effects of channel height on heat transfer coefficients for target and side walls. High resolution local heat transfer coefficient distributions were measured using temperature sensitive paint and recorded via a scientific grade CCD camera. Streamwise pressure distributions for both the target and side walls was recorded and used to explain heat transfer trends. Results are presented for average jet based Reynolds numbers 17K to 45K. All experiments were carried out on a large scale single row, 15 hole impingement channel, with X/D of 5, YID of 4, and Z/D of 1, 3 and 5. Providing high quality results will aid in the validation of predictive tools and development of physics-based models.
|
90 |
Vliv stabilizačních cvičení pletence ramenního na svalovou aktivitu při přímém impaktu u hráčů ragby se subakromiálním impingement syndromem / The effect of shoulder girdle stabilization exercises on muscle activity during direct impact in rugby players with subacromial impingement syndromeChytilová, Martina January 2016 (has links)
Title: The effect of shoulder girdle stabilization exercises on muscle activity during direct impact in rugby players with sub-acromial impingement syndrome Objectives: Comparison of muscle activity during direct impact while performing the rugby tackle to tackle bag and to player using amplitude analysis of electromyographic signal (EMG) before and after intervention programme for players with subacromial impingement syndrome (SIS). Application of intervention programme consisting stabilization excercises for shoulder complex and activation of deep stabilization muscles of the spine. Methods: Theoretical part contains topics about shoulder girdle, rugby and rugby injuries, mainly subacromial impingement syndrome and electromyography. Mentioned issues are included into the thesis due to the research of current literature from international sources and studies. Practical part regards the aplication of three- months long intervention programme for eight rugby players at junior national level with diagnosis of SIS, when pre-testing a post-testing is realized by clinical tests and EMG measurement. Results: Intervention programme was sufficient for changes of EMG amplitude values expressed as percentage of maximal voluntary isometric contraction (MVIC) in some of rugby players with SIS only for some...
|
Page generated in 0.0863 seconds