• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Investigation of Boiling Heat Transfer Under an Impinging Water Jet

Abdelfattah, Mahmoud January 2022 (has links)
The current study is an experimental and analytical investigation of JIB within the nucleate and transition boiling regimes. This study focuses on studying JIB within the stagnation zone of a free water jet. An experimental setup has been designed and built at the Thermal Processing Laboratory (TPL) with the capability of carrying out boiling experiments at heat fluxes up to 12 MW/m2. The JIB curves have been obtained under steady-state conditions for a wide range of jet conditions, higher than those considered during previous JIB studies. The effect of jet velocity, up to 3.8 m/s, and degree of subcooling, up to 49 °C, on the JIB curve has been studied. The results showed that both jet velocity and degree of subcooling have a weak effect on the nucleate boiling regime and significantly affect the transition boiling regime. Bubble dynamics under the impinging jet within the nucleate boiling regime and the stability of the vapor layer within the transition boiling regime have been investigated. An analytical mechanistic model, based on force balance and thermal balance equations, has been developed to predict the bubble growth rate and the BDD. The developed model was validated using current experimental data. The model gave a relative deviation of 17.8 %. Results of the mechanistic model within the stagnation zone showed that, amongst the three heat transfer mechanisms that affect bubble growth (i.e., the microlayer evaporation, the heat from the superheated layer, the convection heat loss to subcooled liquid), the microlayer evaporation is the most significant contributor to the rate of bubble growth. The current work conducted within the transition boiling regime was focused on the determination of the total wall heat flux within the stagnation zone, both experimentally and analytically. Steady-state experiments have been carried out during which the vapor layer stability was examined. The vapor layer breakup frequency was measured using a fiber-optic probe. Experiments were conducted at a jet velocity of 1 m/s and degrees of subcooling between 11 and 49 ºC. / Thesis / Doctor of Philosophy (PhD)
2

Local heat transfer rate and bubble dynamics during jet impingement boiling

Mani, Preeti 29 October 2012 (has links)
Characterization of local boiling trends, in addition to the typically reported area-averaged trends, is essential for the robust design and implementation of phase change technologies to sensitive heat transfer applications such as electronics cooling. Obtaining the values of heat fluxes corresponding to locally varying surface temperatures has been a challenge limiting most investigations to area-averaged results. This thesis illustrates the importance of a spatially local heat transfer analysis during boiling. Pool and submerged jet impingement boiling scenarios on a silicon surface are considered at the macroscale (27.5 mm heater with multiple nucleation sites) and microscale (1000 ��m heater for isolated bubble generation), by the use of two thin film serpentine heater geometries. The macroscale heater highlights the effect of spatial variations in imposed heat flux on boiling heat transfer with a circumferentially uniform but radially non-uniform heat flux distribution. The microscale heater simulates a local hot-spot for spot cooling on an electronic device. Spatial variation in boiling heat transfer and bubble dynamics with and without a jet flow are documented using thin film voltage sensors along with qualitative and quantitative high speed imaging and infra-red thermography. Unique to this study is the documentation of local boiling curves for different radial locations on the heat transfer surface and their comparison with the corresponding area-averaged representations. It is shown here that sectionally averaged representations of boiling curves over regions of like-imposed heat flux can substantially simplify the interpretation of data while retaining important information of the local variations in heat transfer. The radial influence of the convective jet flow on the bubble dynamics and boiling heat transfer is assessed for a single circular submerged jet configuration. Varied parameters include jet exit Reynolds numbers, nozzle geometry, test fluid (deionized water and FC-72), fluid subcooling and the supplied heat flux. Distinct modifications of the surface temperature distribution imposed by the impinging jet flow are highlighted by comparing radial temperature profiles during pool and jet impingement boiling. It is demonstrated that in contrast with pool boiling, thermal overshoots during jet impingement boiling for a highly wetting fluid like FC-72 are highest in regions farthest from the impingement point. The effect of jet inertia on bubble departure characteristics are compared with pool boiling under subcooled conditions for FC-72. Qualitative high speed visualization indicates the presence of two modes of bubble generation during jet impingement boiling (a) bubble departure from the surface and (b) bubble separation from the source resulting in sliding bubbles over the surface. The effect of jet flow on bubble entrainment is depicted. Quantitative results indicate that in general departure diameters for pool and jet impingement boiling increase and plateau at a maximum value with increasing power input while no notable trends were observed in the corresponding departure frequencies. The largest departure diameters for jet impingement boiling at fixed fluid subcoolings of 10��C and 20��C were found to be smaller than that for the corresponding pool boiling test by a factor of 1.6 and 2.3, respectively. / Graduation date: 2013

Page generated in 0.1333 seconds