• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • Tagged with
  • 18
  • 18
  • 10
  • 9
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effects of hole pitch variation on overall and internal effectiveness in the leading edge region of a simulated turbine blade with heat flux measurements

Dyson, Thomas Earl 28 October 2010 (has links)
In this study, the cooling of a simulated blade under increasing pitch between holes was examined. The change in non-dimensional surface temperature, phi, was measured experimentally to quantify this performance loss. This critical quantification of the sensitivity of cooling to pitch between holes has not been studied previously. A range of blowing ratios and angles of attack were tested. Data are presented in terms of the laterally averaged phi, and in terms of the minimum phi, arguably more important from a design perspective. Increasing the pitch 13% produced no measureable change using either parameter. An increase of 26% in pitch produced only a 4% loss in lateral averages, while some hot points dropped by 10%. These small changes are due to compensating effects of increased internal and through-hole convective cooling. A limit to these effects was shown when increasing pitch 53%. While performance loss in the average was still relatively small at 15%, the minimum phi decreased by 27%. Heat flux gauges were used to gather data on the internal and external surface. The internal impingement used in this study represents a more accurate representation of internal cooling for an actual engine part than has been previously studied, providing a starting point for exploring the differences between engine configurations and those generally investigated in the literature. External heat flux measurements were used to measure the ratio of heat flux with and without film cooling. These results call into question the use of the net heat flux reduction parameter, which is commonly used to quantify overall film cooling performance. / text
12

THE SHOULDER EFFECT IN TRANSITION BOILING DURING SUBMERGED JET IMPINGEMENT

Tyler Preston Stamps (16640598) 08 August 2023 (has links)
<p>Two-phase jet impingement combines the latent heat absorbed by boiling heat transfer with the strong forced convection of an impinging jet. It is a compact and highly effective heat transfer method that is capable of high heat transfer coefficients and high boiling critical heat flux limits. This makes it a suitable technology for electronics immersion cooling applications when configured as a submerged jet of a dielectric coolant. Previous studies have focused on the heat-flux-controlled nucleate boiling performance of an impingement jet up to the critical heat flux. Exploration of other boiling regimes that occur under temperature-controlled surfaces is of fundamental importance to fully understand the design space. It has been shown for free jets that a high and consistent heat flux can be dissipated over a wide range of surface superheats in the transition boiling regime when the surface is temperature-controlled. This effect is strongest in the stagnation zone, directly beneath the jet. Literature that studies this so-called “shoulder effect”, or heat flux shoulder, is scarce and almost completely focused on applications in metals processing using free jets of water as the coolant. It has been hypothesized previously that the impinging subcooled liquid delays and disrupts the start of film boiling, thereby dissipating heat flux levels comparable to that during nucleate boiling. To exploit operation in this unique transition boiling regime for potential applications in immersion cooling of electronics, the occurrence of this shoulder effect, as well as means for estimating the shoulder heat flux across different operating conditions, must be investigated for submerged jets and dielectric coolants. </p> <p>In this work, temperature-controlled submerged jet impingement is experimentally characterized using HFE-7100. A copper heater sized to be completely covered by the jet stagnation zone is increased in surface temperature throughout the transition boiling regime via a PID controller, which allows for steady-state temperature-controlled data to be acquired in this regime. The boiling curves, including critical heat flux and shoulder heat flux, are measured for jet velocities from 0.5-3 m/s and inlet subcooling from 5-30 K. The shoulder effect is shown to exist in these conditions. High-speed imaging is used to relate the flow behavior to the boiling thermal measurements and shows that the shoulder heat flux effect is an enhanced film heat transfer in the film-like mode of transition boiling. Trends and dependencies on inlet subcooling and jet velocity are measured and used to assess available predictive tools. It is observed that there is a proportionality between the critical heat flux and the shoulder heat flux. This implies a mechanistic similarity between the two effects. With further data to correlate, this similarity can potentially be used to predict the shoulder heat flux leveraging existing correlations for the critical heat flux, widening the design space of two-phase jet impingement systems. </p>
13

Thermal control of gas turbine casings for improved tip clearance

Choi, Myeonggeun January 2015 (has links)
A thermal tip clearance control system provides a robust and flexible means of manipulating the closure between the casing and the rotating blade tips in a jet engine, reducing undesirable tip leakage flows. This may be achieved using an impingement cooling scheme on the external casing of the engine in conjunction with careful thermal management of internal over-tip seal segment cavity. For a reduction in thrust specific fuel consumption, the mass flow rate of air used for cooling must be minimised, be at as low a pressure as possible and delivered through a light weight structure surrounding the rotating components in the turbine. This thesis first characterises the effectiveness of a range of external impingement cooling arrangements in typical engine casing closure system. The effects of jet-to-jet pitch, number of jets, inline and staggered alignment of jets, arrays of jets on flange, on an engine representative casing geometry are assessed through comparison of the convective heat transfer coefficient distributions in a series of numerical studies. A baseline case is validated experimentally. The validation data allowed the suitability of different turbulence closure models to be assessed using a commercial RANS solver. Importantly for each configuration the thermal contraction of an idealised engine casing is predicted using thermo-mechanical finite element models, at a series of operating conditions representing engine idle to maximum take-off conditions. Cooling is provided by manifolds attached to the outside of the engine. The assembly tolerance of these components leads to variation in the standoff distance between the manifold and the casing. For cooling arrangements with promising performance, the study is extended to characterise the variation in closure with standoff distance. It is shown that where a sparse array of non-interacting jets is used the system can be made tolerant of large build misalignments. The casing geometry itself contributes to the thermal response of the system, and, in an additional study, the effect of casing thickness and circumferential thermal control flanges are investigated. Restriction of the passage of heat into the flanges was seen to be dramatically change their effectiveness and slight necking of the flanges at their root was shown to improve the performance disproportionally. High temperature secondary air flowing past the internal face of the engine casing tends to heat the casing, causing it to grow. Experimental and numerical characterisation of a heat transfer within a typical over-tip segment cavity heat transfer is presented in this thesis for the first time. A simplified modelling strategy is proposed for casing and a means to reduce the casing heat pickup by up to 25 % was identified. The overall validity of the modelling approach used is difficult to validate in the engine environment, however limited data from a test engine temperature survey became available during the course of the research. By modelling this engine tip clearance control system it was shown that good agreement to the temperature distribution in the engine casing could be achieved where full surface external heat transfer coefficient boundary conditions were available.
14

Single Jet Impingement Cooling in a Stationary and Rotating Square Duct

Huang, Jung-Tai 25 August 2003 (has links)
Abstract The influence of rotating and cross flow effect on local heat transfer coefficient and flow visualization for a single confined air/water jet with jet-to-wall spacing from 5 to 11.4, jet Reynolds number from 6500 to 26000, rotational Reynolds number from 0 to 112000, curvature ratio from 150 to , ratio of crossflow massflux to jet mass flux from 0 to 2, and the heat flux from 1430 to 12890W/m2 were reported. The local heat transfer coefficient for air/water along the surface is measured and the effect of the rotation, the jet-to-wall spacing, the surface curvature, local and average Nusselt number, are presented and discussed. Furthermore, flow visualization was made in the present study. Based on the experimental result, it is found that the rotation will induce the centrifugal and coriolis force. It also shows that the heat transfer response will be decreased when the impinging direction parallel to the rotating direction, and increased when impinging direction perpendicular to the rotating direction. Crossflow effect will make Nusselt number decrease to 48% when M=2. Moreover, the roughen surface will increase the heat transfer coefficient up to 22% due to the secondary flow. The flow visualization is used to observe the transition of laminar to turbulence flow and to calculate the boundary layer thickness.
15

Thermal Management Strategies for Hypersonic Flight: Supercritical CO2 Jet Impingement Cooling Investigation for Leading Edge

Sargunaraj, Manoj Prabakar 01 January 2023 (has links) (PDF)
This study addresses the critical need for effective thermal management in hypersonic vehicles facing intense heat at their leading edge due to high enthalpy flow. The objective is to propose an active impingement cooling system that ensures the structural stability and performance of these vehicles. This dissertation presents an in-depth exploration of the numerical simulations conducted on the hypersonic leading edge, focusing on a 3mm radius with active cooling utilizing supercritical carbon dioxide (sCO2) as the coolant. The research incorporates conjugate simulations that merge external hypersonic flow and sCO2 active cooling. Utilizing a thermodynamic non-equilibrium two-temperature model and various chemical models, including the 5-species Park's model and the 11-species Gupta's model, separate validations for the external hypersonic flow and internal sCO2 coolant flow were conducted. These validations facilitated combined simulations, underscoring the potential of maintaining metal temperatures within operational limits using sCO2 coolant. A comparative study of the 5- 5-species Park model and 11-species Gupta model demonstrated the former's effectiveness in predicting flow fields at Mach 7. Furthermore, this study shows the effect of varying the coolant tube-to-leading-edge distance (H/D), Thermal barrier coating thickness, and impingement angles, demonstrating improved heat transfer performance through these variations. A key aspect of this work is the exploration of converting hypersonic vehicle heat flux to power using the sCO2 cycle. The conceptual study, illustrated through the Mach 7 case, confirms the feasibility of harnessing power from aerodynamic heat flux, marking a significant progression in the field. This research contributes to the field by offering a detailed analysis of active impingement cooling for hypersonic leading edges, integrating real gas effects and multiple chemical models. The study adds novelty by investigating heat transfer enhancements through iv geometric variations and evaluating sCO2's potential as a coolant, addressing key facets of hypersonic vehicle thermal management.
16

A Study of Blockage due to Ingested Airborne Particulate in a Simulated Double-Wall Turbine Internal Cooling Passage

Peterson, Blair A. 19 May 2015 (has links)
No description available.
17

Increasing the Heat Transfer on a Grooved Surface Under Dry and Wet Conditions by Using of Jet Impingement

Alghamdi, Abdulrahman Saeed 15 June 2020 (has links)
An approach to hybrid cooling technique is proposed using air jets which impinge on a triangular grooved surface with dry grooves and grooves containing water. One major application is for condensers of thermoelectric power plants. The heat and mass transfer analogy were successfully used to evaluate the simultaneous heat and mass transfer. Results showed that hybrid jet impingement produced high heat flux levels at low jet velocities and flow rates. Experimental results were used to characterize the resulting heat transfer under different conditions such as flow open area percentage, array orifices diameter and array to surface stand-off distance. The results have shown that jet impingement is capable of delivering high transfer rates with lower cooling cost rates compared to current industry conventional techniques. Water is efficiently used in hybrid jet impingement because evaporative energy is absorbed directly from the surface instead of cooling air to near wet-bulb temperature. / Master of Science / Array jet impingement cooling experiments were conducted on a triangular grooved surface with the surface at a constant temperature. Results showed that jet impingement can provide high transfer rates with lower rates of cooling cost in comparison to contemporary conventional techniques in the industry. Experiments on the triangular grooved surfaces were performed at dry and wet surface conditions. Under the dry conditions, the objective is to characterize the resulting heat transfer under varying operational conditions such as jet speed, array orifice diameter, array to surface stand-off distance, and flow open area percentage. Results from the triangular surface when dry showed less improvement in heat transfer than the rectangular grooved surface. A hybrid cooling technique approach was proposed and developed by using air jets impinging on a triangular grooved surface with the grooves containing water. The approach is being suggested and experimentally tested for its viability as an alternative to thermoelectric power plant cooling towers. Convection heat and mass transfer coefficients were experimentally measured for different wet coverage of the surface. Results showed that the hybrid jet impingement produced high heat flux levels at low jet velocities and flow rates. The highest heat transfer was consistently found with a 50% coverage of the surface. Hybrid jet impingement showed an improvement up to 500% in heat transfer as compared to jet impingement on a dry grooved surface.
18

Augmentation of Jet Impingement Heat Transfer on a Grooved Surface Under Wet and Dry Conditions

Alsaiari, Abdulmohsen Omar 27 November 2018 (has links)
Array jet impingement cooling experiments were performed on flat and grooved surfaces with the surface at a constant temperature. For the flat surface, power and temperature measurements were performed to obtain convection coefficients under a wide range of operating conditions such as jet speed, orifice to surface stand-of distance, and open area percentage. Cooling performance (CP) was calculated as the ratio between heat transfer and fan power. An empirical model was developed to predict jet impingement heat transfer taking into account the entrainment effects. Experimental results showed that jet impingement can provide high transfer rates with lower rates of cooling cost in comparison to contemporary conventional techniques in the industry. CP values over 279 were measured which are significantly higher than the standard values of 70 to 95 in current technology. The model enhanced prediction accuracy by taking into account the entrainment effects; an effect that is rarely considered in the literature. Experiments on the grooved surfaces were performed at dry and wet surface conditions. Under dry conditions, results showed 10%~55% improvement in heat transfer when compared to the flat surface. Improvement percentage tends to be higher at wider gaps between the array of orifices and the grooved surface. An improvement of 30%~40% was observed when increasing Re either by increasing orifice diameter or jet speed. Similar improvement was observed at higher flow open area percentages. No significant improvement in heat transfer resulted from decreasing the size of the grooves from 3.56mm to 2.54mm. Similarly, no noticeable change in heat transfer resulted from changing the relative position of the jets striking the surface at the top of the grooves to the bottom of the grooves. Deeper grooves with twice the depth gave statistically similar average heat transfer coefficients as shallower grooves. Under wet conditions, a hybrid cooling technique approach was proposed by using air jets impinging on a grooved surface with the grooves containing water. The approached is proposed and evaluated experimentally for its feasibility as an alternative for cooling towers of thermoelectric power plants. Convection heat and mass transfer coefficients were measured experimentally using the heat mass transfer analogy. Results showed that hybrid jet impingement provided high magnitudes of heat flux at low jet speeds and flow rates. High coefficients of performance CP > 3000, and heat fluxes > 8,000W/m2 were observed. Hybrid jet impingement showed 500% improvement as compared to jet impingement on a dry flat surface. CP values of hybrid jet impingement is 600% to 1,500% more as compared to performance of air-cooled condensers and wet cooling towers. Water use for hybrid jet impingement cooling is efficient since evaporation energy is absorbed from the surface directly instead of cooling air to near wet-bulb temperature. / PHD / This thesis explored the possibility of using air jets on the outside surface of a device that is used to condense steam. An experiment apparatus was used to imitate the conditions of steam condensation in the lab. A flat metallic surface was heated by placing an electric heater beneath it. The metallic surface was cooled using air jets coming out of orifices situated above the hot metallic surface. A fan, connected to an electric motor, was used to create the air jets. The amount of heat transfer was measured by measuring the electric power the heater consumed. This measured power was compared to the power needed to run the fan. The ratio of heat transfer to fan power is called the coefficient of performance CP. The CP values of more than 200 were obtained when air jets were used meaning that we need one kilowatt of mechanical power to remove 200 kilowatts of heat. This CP value is 300% more than the current technology used in the industry where CP ranges from 70 to 90. This means that we can build very efficient steam condensers for power plants. This type of condensers that uses air jets allows the power plant to be efficient and to be able to increase the amount of power generated without extra cost. Further enhancement of the CP can be achieved by making the hot surface grooved instead of flat with the grooves containing water. Air jets, coming out of orifices situated above the grooved surface, were used for cooling. The CP values of more than 3,000 were obtained when air jets were used with wet grooved surface. This CP values is 1,500% more than the current technology used in the industry. This type of condensers that uses air jets on wet grooves allows the power plant to be efficient and to be able to tremendously increase the amount of power generated without extra power and water costs.

Page generated in 0.1316 seconds