• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • Tagged with
  • 18
  • 18
  • 10
  • 9
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single Jet Impingement Cooling in a Roughened Rotating Square Duct

Tsai, Hsiu-Huang 24 July 2001 (has links)
Abstract The experiments was studied on a rotating ribbed square duct from two different impingement position of air jets (termed as Type A and B) and at rotational speeds of 0,300 and 600 rpm¡CThe jet impinged on two different geometric types of rib (square and semi-circular ribs). The study covered jet Reynolds number 5000 to 9000 and the jet rotation number was varied from 0 to 0.0053. Results are presented and focused on the effect of two of circular jet arrangements and different geometric of ribs. Significant heat transfer enhancement was found for Type A configuration and square ribs within the ranges of operating parameters considered in the study. However, rotation induced Coriolis and centrifuged forces decreased the Nusselt number values (up to 20%) which is quitely conincided with those of previous studies.
2

Study of the Effects of Single and Double Droplets Impingement on Surface Cooling

Tsai, Hsin-Min 2011 August 1900 (has links)
Spray cooling is a promising technique which is used to remove large amounts of heat from surfaces. It is characterized by uniform heat removal, low droplet impact velocity and better cooling efficiency when compared to other cooling schemes. It can be used in electronic cooling, and other applications. However, due to the multiple impacts of droplets, the film fluid dynamics and morphology are quite complicated. Moreover, the effect of heat transfer under spray cooling is not well understood due to the large number of interdependent variables such as impact spacing, impact angle, droplet diameter, droplet velocity and droplet frequency to name a few. An experimental approach is proposed and used to minimize and control key independent variables to determine their effects on surface temperature and heat transfer cooling mode. The effects of droplet impact angle and spacing on different heat flux conditions are studied. The film thickness is also obtained to further investigate the relationship between the independent variable and the observed heat transfer mechanism. The study of coherent droplet impingement on an open surface is experimentally characterized using high speed imaging and infrared thermography. Single stream droplet impingent cooling with different impact angle is also studied. Temperature distribution and impact crater morphology are obtained under different heat flux conditions. Film thickness inside droplet impact craters is measured to understand the relationship between minimum surface temperature and film thickness. Next, double streams droplet impingement cooling with different spacings and impact angles are investigated. The optimum spacing is found to reduce the droplet-to-droplet collision and to minimize splashing, resulting in enhanced heat transfer and better use of the cooling fluid. The film thickness is also measured to understand the relationship between the heat transfer results and the controllable independent variables. The results and conclusions of this study are useful in understanding the physics of spray cooling and can be applied to design better spray cooling systems.
3

Study of the Physics of Droplet Impingement Cooling

Soriano, Guillermo Enrique 2011 May 1900 (has links)
Spray cooling is one of the most promising technologies in applications which require large heat removal capacity in very small areas. Previous experimental studies have suggested that one of the main mechanisms of heat removal in spray cooling is forced convection with strong mixing due to droplet impingement. These mechanisms have not been completely understood mainly due to the large number of physical variables, and the inability to modulate and control variables such as droplet frequency and droplet size. Our approach consists of minimizing the number of experimental variables by controlling variables such as droplet direction, velocity and diameter. A study of heat transfer for single and multiple droplet impingements using HFE- 7100 as the cooling fluid under constant heat flux conditions is presented. Monosized single and multiple droplet trains were produced using a piezoelectric droplet generator with the ability to adjust droplet frequency, diameter, velocity, and spacing between adjacent droplets. In this study, heaters consisting of a layer of Indium Tin Oxide (ITO) as heating element, and ZnSe substrates were used. Surface temperature at the liquid-solid interface was measured using Infrared Thermography. Heat transfer behavior was characterized and critical heat flux was measured. Film thickness was measured using a non-invasive optical technique inside the crown formation produced by the impinging droplets. Hydrodynamic phenomena at the droplet impact zone was studied using high speed imaging. Impact regimes of the impinging droplets were identified, and their effect on heat transfer performance were discussed. The results and effects of droplet frequency, droplet diameter, droplet velocity, and fluid flow rate on heat flux behavior, critical heat flux, and film morphology were elucidated. The study showed that forced heat convection is the main heat transfer mechanism inside the crown formation formed by droplet impingement and impact regimes play an important role on heat transfer behavior. In addition, this study found that spacing among adjacent droplets is the most important factor for multiple droplet stream heat transfer behavior. The knowledge generated through the study provides tools and know-how necessary for the design and development of enhanced spray cooling systems.
4

An Experimental Study of Jet Impingement and Spray Cooling

Tsai, Huand-Hsiu 20 July 2006 (has links)
An experimental investigation was carried out to examine the jet impingement and spray cooling. There are three parts in this study. The first part was investigated the effects of jet impinging positions on heat transfer from rib-roughened (square and semi-circular) channels with rotational speeds of up to 600 rpm. Results were presented for rotating number (Ro), jet impinging position, surface roughness and jet Reynolds number effects on local Nusselt numbers. The second part was studied instantaneous velocity fields for a single slot liquid microjet using MPIV. The streamwise mean velocity fields and flow evolutions with six nozzle-to-target spacing ratios of 0.86, 1, 1.2, 1.5, 2 and 3 and for eight jet Reynolds numbers Re of 50, 100, 150, 200, 250, 300, 350 and 400 were measured and calculated. The third part was investigated the flow field and heat transfer mechanism for water spray and cryogen (R-134a) spray cooling. An optical image system was used to quantify the droplet size and distribution and Laser Doppler Velocimetry (LDV) measurements to obtain the local velocity distributions. The effects of mass flow rate and average droplet velocity, and spray exit-to-target distance on the surface heat flux including the corresponding critical heat flux (CHF) were explored for R-134a which may enhance the current cryogen spray cooling (CSC) technique that assists laser therapy of dermatoses.
5

Single Jet Impingement Cooling in a Smooth Rotating Square Duct with Thermochromic Liquid Crystals

Chan, Shih-Chi 23 July 2002 (has links)
Abstract The present investigation is performed by repeated experiments to simulate the impingement cooling heat transfer in leading-edge region of gas turbine with thermochromic liquid crystals. The experiments was studied on a rotating square duct without crossflow effect from three different rotational speeds of 0, 30 and 60 rpm. The study covered jet Reynolds number 7000 to 9000 and the rotational speeds from 0 to 60 rpm. Results are presented and focused on the effect of three different rotational speeds. Nusselt number values increased (up to 14%) with Reynolds number. However, Rotation induced coriolis and centrifuged forces and decreased the Nusselt number values about 9% which is quite coincided with those of previous studies.
6

Cooling techniques for advanced gas turbines

Kersten, Stephanie 01 January 2008 (has links)
Gas turbines are widely used for power generation, producing megawatts of usable energy, but consume fossil fuels in order to do so. With gas prices on the rise, all eyes have turned to operating cost and fuel efficiency. To increase efficiency, manufactures raise the temperature of the gas that is combusted. This temperature is high above the melting point of the turbine components. In order for the gas turbine to work under these conditions, its parts must be protected. This study focuses on two aspects of cooling for turbine components. Over the last decades, researchers have investigated many aspects of film cooling, The present study investigates the impact of the stagnation region created by a downstream airfoil on endwall film cooling effectiveness with and without the presence of wake. Experimental measurements are presented for a single row of cylindrical holes inclined at 35° with hole length to diameter ratio, LID= 7.5, pitch to diameter ratio, Pl/D = 3 with a constant density ratio of 1.26, and with nitrogen as the coolant. Twelve different configurations were studied. The airfoil was positioned at X/D equal to 6.35, 12.7, and 25.4. A wake plate was added upstream of the film holes at -12.7 and -50.8 X/D. The effect of stagnation and wake was combined by placing both the airfoil and the wake plate in the test section, combining all positions of each. Baseline cases for the cooling holes alone, and the cooling holes with the airfoil and wake individually were compared to the combined effects. The experimental data shows that as the airfoil stagnation region inhibits film cooling close to the airfoil, and strong wake decreases film effectiveness. With both stagnation region and wake combined, an overall decrease in film cooling performance is observed. Higher blowing ratio increase lateral spreading of the jet promoting jet to jet interaction and mainstream interaction enhancing mixing. The presence of wake promotes jet mixing with the mainstream resulting in lower film cooling effectiveness. High performance turbine airfoils are typically cooled with a combination of internal cooling channels and impingement/film cooling. In such applications, the jets impinge against a target surface, and then exit along the channel formed by the jet plate, target plate, and side walls. Local convection coefficients are the result of both the jet impact, as well as the channel flow produced from the exiting jets. Numerous studies have explored the effects of jet array and channel configurations on both target and jet plate heat transfer coefficients. However, little work has been done in examining effects of height variation and heating on all channel walls, in which both target wall and side wall data is taken, as was neglected by previous literature. This study examines the local and averaged effects of channel height on heat transfer coefficients for target and side walls. High resolution local heat transfer coefficient distributions were measured using temperature sensitive paint and recorded via a scientific grade CCD camera. Streamwise pressure distributions for both the target and side walls was recorded and used to explain heat transfer trends. Results are presented for average jet based Reynolds numbers 17K to 45K. All experiments were carried out on a large scale single row, 15 hole impingement channel, with X/D of 5, YID of 4, and Z/D of 1, 3 and 5. Providing high quality results will aid in the validation of predictive tools and development of physics-based models.
7

Impingement Cooling: Heat Transfer Measurement by Liquid Crystal Thermography

Omer, Muhammad January 2010 (has links)
<p>In modern gas turbines parts of combustion chamber and turbine section are under heavy heat load, for example, the rotor inlet temperature is far higher than the melting point of the rotor blade material. These high temperatures causes thermal stresses in the material, therefore it is very important to cool the components for safe operation and to achieve desired component life. But on the other hand the cooling reduces the turbine efficiency, for that reason it is vital to understand and optimize the cooling technique.</p><p>In this project Thermochromic Liquid Crystals (TLCs) are used to measure distribution of heat transfer coefficient over a scaled up combustor liner section. TLCs change their color with the variation of temperature in a particular temperature range. The color-temperature change relation of a TLC is sharp and precise; therefore TLCs are used to measure surface temperature by painting the TLC over a test surface. This method is called Liquid Crystal Thermography (LCT). LCT is getting popular in industry due to its high-resolution results, repeatability and ease of use.</p><p>Test model in present study consists of two plates, target plate and impingement plate. Cooling of the target plate is achieved by impingement of air coming through holes in the impingement plate. The downstream surface of the impingement plate is then cooled by cross flow and re-impingement of the coolant air.</p><p>Heat transfer on the target plate is not uniform; areas under the jet which are called stagnation points have high heat transfer as compare to the areas away from the center of jet. It is almost the same situation for the impingement plate but the location of stagnation point is different. A transient technique is used to measure this non-uniform heat transfer distribution. It is assumed that the plates are semi-infinitely thick and there is no lateral heat transfer in the plates. To fulfill the assumptions a calculated time limit is followed and the test plates are made of Plexiglas which has very low thermal conductivity.</p><p>The transient technique requires a step-change in the mainstream temperature of the test section. However, in practical a delayed increase in mainstream temperature is attained. This issue is dealt by applying Duhamel’s theorem on the step-change heat transfer equation. MATLAB is used to get the Hue data of the recorded video frames and calculate the time taken for each pixel to reach a predefined surface temperature. Having all temperatures and time values the heat transfer equation is iteratively solved to get the value of heat transfer coefficient of each and every pixel of the test surface.</p><p>In total fifteen tests are conducted with different Reynolds number and different jet-to-target plate distances. It is concluded that for both the target and impingement plates, a high Reynolds number provides better overall heat transfer and increase in jet-to-target distance</p><p>decreases the overall heat transfer.</p>
8

Impingement Cooling: Heat Transfer Measurement by Liquid Crystal Thermography

Omer, Muhammad January 2010 (has links)
In modern gas turbines parts of combustion chamber and turbine section are under heavy heat load, for example, the rotor inlet temperature is far higher than the melting point of the rotor blade material. These high temperatures causes thermal stresses in the material, therefore it is very important to cool the components for safe operation and to achieve desired component life. But on the other hand the cooling reduces the turbine efficiency, for that reason it is vital to understand and optimize the cooling technique. In this project Thermochromic Liquid Crystals (TLCs) are used to measure distribution of heat transfer coefficient over a scaled up combustor liner section. TLCs change their color with the variation of temperature in a particular temperature range. The color-temperature change relation of a TLC is sharp and precise; therefore TLCs are used to measure surface temperature by painting the TLC over a test surface. This method is called Liquid Crystal Thermography (LCT). LCT is getting popular in industry due to its high-resolution results, repeatability and ease of use. Test model in present study consists of two plates, target plate and impingement plate. Cooling of the target plate is achieved by impingement of air coming through holes in the impingement plate. The downstream surface of the impingement plate is then cooled by cross flow and re-impingement of the coolant air. Heat transfer on the target plate is not uniform; areas under the jet which are called stagnation points have high heat transfer as compare to the areas away from the center of jet. It is almost the same situation for the impingement plate but the location of stagnation point is different. A transient technique is used to measure this non-uniform heat transfer distribution. It is assumed that the plates are semi-infinitely thick and there is no lateral heat transfer in the plates. To fulfill the assumptions a calculated time limit is followed and the test plates are made of Plexiglas which has very low thermal conductivity. The transient technique requires a step-change in the mainstream temperature of the test section. However, in practical a delayed increase in mainstream temperature is attained. This issue is dealt by applying Duhamel’s theorem on the step-change heat transfer equation. MATLAB is used to get the Hue data of the recorded video frames and calculate the time taken for each pixel to reach a predefined surface temperature. Having all temperatures and time values the heat transfer equation is iteratively solved to get the value of heat transfer coefficient of each and every pixel of the test surface. In total fifteen tests are conducted with different Reynolds number and different jet-to-target plate distances. It is concluded that for both the target and impingement plates, a high Reynolds number provides better overall heat transfer and increase in jet-to-target distance decreases the overall heat transfer.
9

Characterization Of An Inline Row Impingement Channel For Turbine Blade Cooling Applications

Ricklick, Mark 01 January 2009 (has links)
Gas turbines have become an intricate part of today's society. Besides powering practically all 200,000+ passenger aircraft in use today, they are also a predominate form of power generation when coupled with a generator. The fact that they are highly efficient, and capable of large power to weight ratios, makes gas turbines an ideal solution for many power requirement issues faced today. Designers have even been able to develop small, micro-turbines capable of producing efficient portable power. Part of the turbine's success is the fact that their efficiency levels have continuously risen since their introduction in the early 1800's. Along with improvements in our understanding and designs of the aerodynamic components of the turbine, as well as improvements in the areas of material design and combustion control, advances in component cooling techniques have predominantly contributed to this success. This is the result of a simple thermodynamic concept; as the turbine inlet temperature is increased, the overall efficiency of the machine increases as well. Designers have exploited this fact to the extent that modern gas turbines produce rotor inlet temperatures beyond the melting point of the sophisticated materials used within them. This has only been possible through the use of sophisticated cooling techniques, particularly in the 1st stage vanes and blades. Some of the cooling techniques employed today have been internal cooling channels enhanced with various features, film and showerhead cooling, as well as internal impingement cooling scenarios. Impingement cooling has proven to be one of the most capable heat removal processes, and the combination of this cooling feature with that of channel flow, as is done in impingement channel cooling, creates a scenario that has understandably received a great deal of attention in recent years. This study has investigated several of the unpublished characteristics of these impingement channels, including the channel height effects on the performance of the channel side walls, effects of bulk temperature increase on heat transfer coefficients, circumferential heat variation effects, and effects on the uniformity of the heat transfer distribution. The main objectives of this dissertation are to explore the various previously unstudied characteristics of impingement channels, in order to sufficiently predict their performance in a wide range of applications. The potential exists, therefore, for a designer to develop a blade with cooling characteristics specifically tailored to the expected component thermal loads. Temperature sensitive paint (TSP) is one of several non-intrusive optical temperature measurements techniques that have gained a significant amount of popularity in the last decade. By employing the use of TSP, we have the ability to provide very accurate (less than 1 degree Celsius uncertainty), high resolution full-field temperature measurements. This has allowed us to investigate the local heat transfer characteristics of the various channel surfaces under a variety of steady state testing conditions. The comparison of thermal performance and uniformity for each impingement channel configuration then highlights the benefits and disadvantages of various configurations. Through these investigations, it has been shown that the channel side walls provide heat transfer coefficients comparable to those found on the target surface, especially at small impingement heights. Although the side walls suffer from highly non-uniform performance near the start of the channel, the profiles become very uniform as the cross flow develops and becomes a dominating contributor to the heat transfer coefficient. Increases in channel height result in increased non-uniformity in the streamwise direction and decreased heat transfer levels. Bulk temperature increases have also been shown to be an important consideration when investigating surfaces dominated by cross flow heat transfer effects, as enhancements up to 80% in some areas may be computed. Considerations of these bulk temperature changes also allow the determination of the point at which the flow transitions from an impingement dominated regime to one that is dominated by cross flow effects. Finally, circumferential heat variations have proven to have negligible effects on the calculated heat transfer coefficient, with the observed differences in heat transfer coefficient being contributed to the unaccounted variations in channel bulk temperature.
10

Heat transfer study of a triple row impingement channel at large impingement heights

Claretti, Roberto 01 January 2011 (has links)
Advanced cooling techniques are required to increase the Brayton cycle temperature ratio necessary for the increase of the overall cycle's efficiency. Current turbine components are cooled with an array of internal cooling channels in the midchord section of the blade, pin fin arrays at the trailing edge and impingement channels in the leading edge. Impingement channels provide the designer with high convective coefficients on the target surface. Increasing the heat transfer coefficient of these channels has been a subject of research for the past 20 years. In the current study, a triple row impingement channel is studied with a jet to target spacing of 6, 8 and 10. The effects of sidewalls are also analyzed. Temperature sensitive paint alongside thin foil heaters are used to obtain heat transfer distributions throughout the target and side walls of the three different channels. Thermal performances were also calculated for the two largest channels. It was found that the side walls provide a significant amount of cooling especially when the channels are mounted side by side so that their sidewalls behave as fins. Similar to literature it was found that an increase in Z/D decreases heat transfer coefficient and provides a more uniform profile. It was also found that the Z/D = 6 and 8 target wall heat transfer profiles are very similar, hinting to the fact that successful potential core impingement may have occurred at height of eight diameters. A Computational Fluid Dynamics, or CFD, study was also performed to provide better insight into the flow field that creates such characteristic heat transfer profiles. The Realizable k-µ solution with enhanced wall functions gave surface heat transfer coefficients 30% off from the experimental data.

Page generated in 0.1319 seconds