Spelling suggestions: "subject:"emplantation He"" "subject:"dimplantation He""
1 |
Élaboration de nanocomposites céramiques carbures/nitrures à partir de polymères / Elaboration of new generation of Carbide/Nitridenanocomposites from polymerProust, Vanessa 14 January 2016 (has links)
Dans le cadre de ce travail, une méthode chimique, la voie « polymère précéramique », a été mise en œuvre pour générer des (nano)composites céramiques à matrice de carbure, carbonitrure et nitrure de silicium et contenant des (nano)cristaux à base de métaux de transition (Ti ou Zr). Ces matériaux ont été préparés sous forme d’objets massifs. Cette thèse consiste tout d’abord en un premier chapitre de bibliographie décrivant les (nano)composites, la méthode de préparation mise en œuvre dans ce manuscrit ainsi que les matériaux visés et leur application, principalement dans le domaine de l’énergie nucléaire et solaire à concentration. L’étude consiste dans un deuxième chapitre à décrire les méthodes de synthèse mises en jeu dans notre étude ainsi que les différentes techniques de caractérisation mises en œuvre pour caractériser les précurseurs de départ, les matériaux au cours de leur élaboration et les matériaux finaux. Le chapitre 3 s’est intéressé à l’élaboration des (nano)composites autour du système Si-C-Ti, pouvant notamment entrer dans la composition de gaines à combustible au sein des réacteurs nucléaires à fission de génération IV. Ces matériaux ont été élaborés à partir de mélanges de nanopoudres à base de titane et d’un polycarbosilane hyperbranché, l’allylhydridopolycarbosilane (AHPCS). Les nanopoudres à base de titane jouent le rôle de charges passives/actives dans l’AHPCS pour s’opposer au retrait volumique que subit le polymère lorsque celui-ci est pyrolysé sous argon à 1000°C. Des objets massifs sont élaborés par moulage. Une étude détaillée du comportement à la pyrolyse des différentes formulations est faite et les matériaux finaux ont été caractérisés structuralement. Une étude préliminaire en implantation hélium de ces matériaux est réalisée. Dans le chapitre 4, nous nous sommes intéressés au même système en travaillant plus particulièrement la chimie de polymères précéramiques. L’objectif a été de synthétiser des polymères dit à « source unique » (=polytitanocarbosilanes) qui, par des traitements thermiques appropriés, conduisent à des (nano)composite dans lesquels des nanocristaux de carbure de titane (nc-TiC) sont dispersés dans une phase amorphe ou cristallisée de carbure de silicium sans phases secondaires comme dans l’approche détaillée au chapitre 3. Ces polymères ont été synthétisés pour être adaptés à la conception d’objets massifs par compactage à chaud puis traitement thermique des compacts polymères. Les matériaux finaux ont alors été caractérisés par différentes techniques afin de sélectionner les paramètres opératoires, allant de la synthèse des polymères à leur conversion en céramique, conduisant aux (nano)composite souhaités (e.g. matrice amorphe de carbure de silicium) avec les propriétés visées (e.g. comportement sous implantation Helium). Dans un cinquième chapitre, l’étude est plus fondamentale et vise à suivre la même démarche de chimiste que le chapitre 4 pour synthétiser des polymétallocarbosilazanes qui sont des précurseurs des systèmes carbonitrures et nitrures de type Si-N-M-(C) (M = Ti, Zr). Une étude de l’effet de la nature du polymère sur les propriétés des (nano)composites est notamment entreprise par RMN du solide, analyse thermogravimétrique et diffraction des rayons X. Une étude préliminaire d’application de ces matériaux en énergie solaire à concentration est proposée. / In the present work, the Polymer Derived Ceramics (PDCs) route has been investigated to prepare silicon carbide (SiC), silicon carbonitride (SiCN) and silicon nitride (Si3N4) matrix (nano)composites in which transition metal-containing (nano)phases (Ti or Zr) are distributed. This approach has been applied to produce bulk materials. In the first chapter, we develop a literature review on the definition and the different types of nanocomposites, the different strategies to prepare them with a particular focus on the PDCs route and the targeted applications in the nuclear and concentrating solar system energy field. In a second chapter, the synthesis experimental protocols and the various methods to characterize the materials at each step of their preparation have been described. The third chapter focuses on the Si-C-Ti compositional system which displays potential to be used in the fuel cladding of the 4th generation of nuclear fission reactor. The precursors are prepared by mixing titanium (Ti)-based nanofillers and a hyperbranched polycarbosilane named allyhydridopolycarbosilanes (AHPCS) to be cast into a green compact then pyrolyzed to generate bulk (nano)composites which represent multiphase materials according to the composition of the nanofillers. In particular, the active behavior of Ti nanopowders into the AHPCS significantly limit the volume shrinkage of the polymer during its pyrolysis at 1000°C under argon to form (nano)composites composed of titanium carbide, titanium silicide and silicon carbide phases. Their structure has been investigated in details and a preliminary study on helium implantation has been done on these materials. In the chapter IV, we considered the same system. Here, our objective was to focus on the chemistry of preceramic polymers to prepare single-source precursors called polytitanocarbosilanes. We investigated their chemistry and structure by solid-state NMR as well as their pyrolysis behavior by thermogravimetric analyses up to 1000°C under argon. Amorphous materials were generated at 1000°C. Titanium carbide nanocrystals precipitated during a further heat-treatment up to 1600°C in a silicon carbide matrix. Dense pieces were prepared by warm-pressing of polytitanocarbosilanes followed by pyrolysis of the green compact. Helium implantation tests have been done and compared with the results gained in chapter 3. In the fifth chapter, we followed the same strategy, with a more fundamental aspect, for (nano)composites prepared in the Si-N-M-(C) (M=Ti, Zr). The effect of the polymetallocarbosilazane formulation on the (nano)composite properties has been investigated by solid-state NMR analysis, thermogravimetric analysis and X-ray diffraction. The structural evolution of these materials has been investigated up to 1600°C under ammonia and nitrogen atmosphere. The final materials represent nanocomposites of the type nc-TiN/a-Si3N4 with nc, nanocrystals and a being amorphous after a pyrolysis at 1400°C. By increasing the temperature up to 1600°C, the matrix crystallized. The effect of zirconium instead of titnanium has been investigated. A preliminary study on the potential of these materials as solar absorber for concentrating solar power (CSP) is reported.
|
2 |
Implantation ionique d'hydrogène et d'hélium à basse énergie dans le silicium monocristallin / Ion implantation of hydrogen helium at low energy in monocrystalline siliconDaghbouj, Nabil 15 January 2016 (has links)
L'implantation d'hydrogène à forte dose est utilisée dans le procédé Smart Cut(tm) afin de transférer des couches de silicium assez épaisses (>200 nm) sur un autre substrat. En utilisant l'implantation à très basse énergie, la co-implantation d'H et d'He pour des doses totales bien plus faibles que celles requises lorsque l'hydrogène est implanté seul ouvre la voie à un transfert de couches beaucoup plus minces (< 50 nm). Cependant, les phénomènes mis en jeu ainsi que les mécanismes responsables de l'interaction, près de la surface libre du wafer, entre l'H et l'He, et les interstitiels et les lacunes qu'ils génèrent, restent à ce jour largement incompris. Dans ce travail, nous avons tout d'abord déterminé l'effet de la réduction des énergies d'implantation d'H et d'He sur la formation et le développement, lors d'un recuit, des cloques qui se forment à partir de micro-fissures en l'absence d'un raidisseur collé à la plaque implantée. Une approche basée sur la comparaison entre les caractéristiques dimensionnelles des cloques obtenues expérimentalement et la simulation par éléments finis, nous a permis de déterminer la pression et la quantité d'He et d'H2 hébergées dans ces cloques. En comparant ces résultats avec les doses d'ions implantées, nous avons pu mettre en évidence l'absence d'exo-diffusion d'He et d'H lors d'un recuit quelle que soit la distance entre la surface et les profils d'ions implantés, qui montre une forte efficacité des cloques à préserver les molécules. Nous avons pu identifier, puis expliquer, la différence en efficacité de coalescence des cloques en fonction de leurs positions en profondeur en la reliant à la variation de l'augmentation d'énergie élastique des cloques par rapport à leur surface. Nous avons ensuite étudié le rôle du dommage ionique, c'est-à-dire des défauts résultants de la co-implantation d'He et d'H, sur la formation et l'évolution thermique de la microstructure du silicium implanté. Cette étude a été menée soit en fonction de l'ordre d'implantation, soit en fonction de la position nominale en profondeur du profil d'He par rapport au profil d'H, soit en fonction du ratio entre les doses d'implantation d'He et d'H. Nous avons montré que la distribution en profondeur de l'H n'est jamais affectée par la co-implantation d'He. L'He est toujours piégé dans la zone où le dommage est maximal. Lorsque le dommage est maximal dans la zone du profil d'H, l'He y diffuse et y est piégé dans des nano-bulles et/ou des microfissures. Mais si le dommage généré dans la zone où est distribué l'He est supérieur à celui généré autour du profil d'H, l'He reste piégé en dehors du profil d'H dans des nano-bulles. L'He contenue dans des nano-bulles, quelle que soit leur distribution en profondeur, ne contribue pas à la pressurisation des cloques ce qui ralenti la coalescence des cloques. Finalement, nous avons pu proposer différents scénarii permettant de rendre compte des similarités et des différences mises en évidence tant avant recuit qu'après recuit, à basse ou plus haute température selon le type d'implantation réalisé. / The high dose hydrogen ion implantation is used in the Smart Cut (tm) process to transfer relatively thick (i.e. >200 nm) Si layers from a donor substrate onto a host material. Hydrogen and helium co-implantation at low energies for a much lower total fluence opens the way for transferring extremely thinner (i.e. <50 nm) layers. However, the phenomena and the mechanisms responsible for the interaction, close to a wafer surface, between H, He, silicon interstitials and vacancies they generate remain poorly understood. First, we studied the effect of reducing the ion energies during both H and He implantations onto the formation and the development of blisters during annealing. Blisters were formed from the micro-cracks since a stiffener was not bonded to the implanted wafer. An approach, based on the comparison between experimentally obtained size characteristics of blisters with the finite element method simulations, allowed us to deduce the pressure inside blister cavities and the fraction of the implanted fluences used to pressurize them. We showed that even when implanted at very low energy, H and He atoms do not exo-diffuse out of the implanted region during annealing. We were able to identify, and then relate the efficiency of blister coalescence to a variation in the elastic energy of blisters as a function of their depth position. In a second part, we studied the role of the damage, produced by He and H coimplantation, on the formation and the thermal evolution of the microstructure of the implanted silicon. These investigations were realized as a function of either the order of co-implantation, or the nominal position of the He profile with respect to the H one, or the ratio between He and H fluences. We showed that the H depth distribution was never affected by He co-implantation. Helium was always trapped at the depth where the damage was maximum. When the damage was highest within the H profile, He diffused and was trapped there in the nano-bubbles and /or the blister cavities. However, when the damage was higher within the He profile than within the H one, He remained trapped in the nano-bubbles outside the H profile. Helium contained in the nano-bubbles, whatever their depth distribution, did not contribute to a pressurization of blister cavities that slowed down their coalescence. Finally, we have proposed various scenarios accounting for the similarities and the differences evidenced both before and after annealing at low or higher temperatures depending on the type of realized implantation.
|
Page generated in 0.0787 seconds