• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distribuição preditiva do preço de um ativo financeiro: abordagens via modelo de série de tempo Bayesiano e densidade implícita de Black & Scholes / Predictive distribution of a stock price: Bayesian time series model and Black & Scholes implied density approaches

Oliveira, Natália Lombardi de 01 June 2017 (has links)
Apresentamos duas abordagens para obter uma densidade de probabilidades para o preço futuro de um ativo: uma densidade preditiva, baseada em um modelo Bayesiano para série de tempo e uma densidade implícita, baseada na fórmula de precificação de opções de Black & Scholes. Considerando o modelo de Black & Scholes, derivamos as condições necessárias para obter a densidade implícita do preço do ativo na data de vencimento. Baseando-­se nas densidades de previsão, comparamos o modelo implícito com a abordagem histórica do modelo Bayesiano. A partir destas densidades, calculamos probabilidades de ordem e tomamos decisões de vender/comprar um ativo. Como exemplo, apresentamos como utilizar estas distribuições para construir uma fórmula de precificação. / We present two different approaches to obtain a probability density function for the stocks future price: a predictive distribution, based on a Bayesian time series model, and the implied distribution, based on Black & Scholes option pricing formula. Considering the Black & Scholes model, we derive the necessary conditions to obtain the implied distribution of the stock price on the exercise date. Based on predictive densities, we compare the market implied model (Black & Scholes) with a historical based approach (Bayesian time series model). After obtaining the density functions, it is simple to evaluate probabilities of one being bigger than the other and to make a decision of selling/buying a stock. Also, as an example, we present how to use these distributions to build an option pricing formula.
2

Distribuição preditiva do preço de um ativo financeiro: abordagens via modelo de série de tempo Bayesiano e densidade implícita de Black & Scholes / Predictive distribution of a stock price: Bayesian time series model and Black & Scholes implied density approaches

Natália Lombardi de Oliveira 01 June 2017 (has links)
Apresentamos duas abordagens para obter uma densidade de probabilidades para o preço futuro de um ativo: uma densidade preditiva, baseada em um modelo Bayesiano para série de tempo e uma densidade implícita, baseada na fórmula de precificação de opções de Black & Scholes. Considerando o modelo de Black & Scholes, derivamos as condições necessárias para obter a densidade implícita do preço do ativo na data de vencimento. Baseando-­se nas densidades de previsão, comparamos o modelo implícito com a abordagem histórica do modelo Bayesiano. A partir destas densidades, calculamos probabilidades de ordem e tomamos decisões de vender/comprar um ativo. Como exemplo, apresentamos como utilizar estas distribuições para construir uma fórmula de precificação. / We present two different approaches to obtain a probability density function for the stocks future price: a predictive distribution, based on a Bayesian time series model, and the implied distribution, based on Black & Scholes option pricing formula. Considering the Black & Scholes model, we derive the necessary conditions to obtain the implied distribution of the stock price on the exercise date. Based on predictive densities, we compare the market implied model (Black & Scholes) with a historical based approach (Bayesian time series model). After obtaining the density functions, it is simple to evaluate probabilities of one being bigger than the other and to make a decision of selling/buying a stock. Also, as an example, we present how to use these distributions to build an option pricing formula.

Page generated in 0.1301 seconds