• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wettability alteration in high temperature and high salinity carbonate reservoirs

Sharma, Gaurav, M.S. in Engineering 02 November 2011 (has links)
The goal of this work is to change the wettability of a carbonate rock from oil wet-mixed-wet towards water-wet at high temperature and high salinity. Only simple surfactant systems (single surfactant, dual surfactants) in dilute concentration were tried for this purpose. It was thought that the change in wettability would help to recover more oil during secondary surfactant flood as compared to regular waterflood. Three types of surfactants, anionic, non-ionic and cationic surfactants in dilute concentrations (<0.2 wt%) were used. Initial surfactant screening was done on the basis of aqueous stability at these harsh conditions. Contact angle experiments on aged calcite plates were done to narrow down the list of surfactants and spontaneous imbibition experiments were conducted on field cores for promising surfactants. Secondary waterflooding was conducted in cores with and without the wettability altering surfactants. It was observed that barring a few surfactants, most were aqueous unstable by themselves at these harsh conditions. Dual surfactant systems, a mixture of a non-ionic and a cationic surfactant increased the aqueous stability of the non-ionic surfactants. One of the dual surfactant system, a mixture of Tergitol NP-10 and Dodecyl trimethyl ammonium bromide, proved very effective for wettability alteration and could recover 70-80% of OOIP during spontaneous imbibition. Secondary waterflooding with the wettability altering surfactant (without alkali or polymer) increased the oil recovery over the waterflooding without the surfactants (from 29% to 40% OOIP). Surfactant adsorption calculated during the coreflood showed an adsorption of 0.24 mg NP-10/gm of rock and 0.20 mg DTAB/gm of rock. A waterflood done after the surfactant flood revealed change in the relative permeability before and after the surfactant flood suggesting change in wettability towards water-wet. / text
2

Probing Chemical Interactions of Asphaltene-like Compounds with Silica and Calcium Carbonate in the Context of Improved Oil Recovery

Hassan, Saleh 11 1900 (has links)
Crude oil recovery is related to surface wettability, which is controlled by crude interactions with rock surfaces. Understanding these interactions is associated with studying the complex asphaltenes that (1) are irreversibly deposited from oil-brine interfaces onto reservoir mineral surfaces, (2) are bulky super-molecules and (3) incorporate several chemical groups by stacking aromatic rings together. This is a difficult task because of varying crude oil composition, asphaltene interfacial and chemical activity, and the potential of irreversibly contaminating analytical equipment by such substances. To overcome these challenges, we split the problem into parts by studying how different mono- and poly-functional groups mimic asphaltene interaction with mineral surfaces, such as silica and calcium carbonate. The amine, carboxylate, and sulfate groups were identified as the highest potential functional groups responsible for asphaltene adsorption. Experiments included quartz crystal micro-balance with dissipation, bulk adsorption, and core samples. Adsorption tests for the mono-functional surfactants studied were fully reversible and, therefore, not representative of asphaltenes. Poly-functional compounds demonstrated irreversible adsorption, mimicking asphaltenes, through ion exchange and ion-bridging, depending on the type of functional group, chain length, mineral surface, and brine ionic composition. Poly-amines adsorb irreversibly onto silica and calcium carbonate surfaces regardless of the brine ionic composition or surface charge. However, irreversible adsorption of poly-sulfates and poly-carboxylates onto surfaces requires (1) sufficiently long chains and (2) an abundant presence of calcium ions in solution to allow ion-bringing mechanism. These findings suggest that crudes containing amine groups and long chains of carboxylates or sulfates have a higher tendency to be adsorbed onto surfaces and change wettability. This is important for designing an efficient detachment of asphaltenic oil from rock surfaces, where no complete desorption or drastic wettability change is required. The weakening of asphaltene interactions may be sufficient to induce spontaneous imbibition and consequently increase the efficiency of two-phase displacement. This work emphasizes the importance of understating crude-brine-rock interactions for the purpose of oil recovery. In summary, evaluating potential candidates for deploying enhanced oil recovery, such as low salinity waterflooding, should consider rock and crude types, as successful implementation requires “specific” properties collaborating together to enable incremental oil production
3

Laboratory investigation of low-tension-gas (LTG) flooding for tertiary oil recovery in tight formations

Szlendak, Stefan Michael 04 April 2014 (has links)
This paper establishes Low-Tension-Gas (LTG) as a method for sub-miscible tertiary recovery in tight sandstone and carbonate reservoirs. The LTG process involves the use of a low foam quality surfactant-gas solution to mobilize and then displace residual crude after waterflood. It replicates the existing Alkali-Surfactant-Polymer (ASP) process in its creation of an ultra-low oil-water interfacial tension (IFT) environment for oil mobilization, but instead supplements the use of foam over polymer for mobility control. By replacing polymer with foam, chemical Enhanced Oil Recovery (EOR) methods can be expanded into sub-30 mD formations where polymer is impractical due to plugging, shear, or the requirement to use a low molecular weight polymer. Overall results indicate favorable mobilization and displacement of residual crude oil in both tight carbonate and tight sandstone reservoirs. Tertiary recovery of 75-95% ROIP was achieved for cores with 2-15 mD permeability, with similar oil bank and other ASP analogous process attributes observed. Moreover, similar recovery was achieved during testing at high initial oil saturation (56%), indicating high process tolerance to oil saturation and potential application for implementation at secondary recovery. In addition, a number of tools and relations were developed to improve the predictive relationship between observed coreflood properties and actual mobilization or displacement mechanisms which impact reservoir-scale flooding. These relations include qualitative dispersion comparison and calculation of in-situ gas saturation, macroscopic mobility ratio at the displacement fronts, and apparent viscosity of injected fluids. These tools were validated through use of reference gas and surfactant floods and indicate that stable macroscopic displacement can be achieved through LTG flooding in tight formations. Furthermore, to better reflect actual reservoir conditions where localized fractional flow of gas can vary substantially depending on mixing or gravity phenomenon, two additional sets of data were developed to empirically model behavior. Through testing of LTG co-injection at a number of discrete fractional flow values over a wide range, recovery was shown to achieve a relative maximum at 50% gas fractional flow which also corresponded with optimal observed mobility control as measured by the previously established tools. Likewise, through testing of surfactant-alternating-gas (SAG) injection cycling, displacement and overall recovery were shown to be improved versus reference co-injection flooding. Finally, by comparing the observed displacement and mobility data among co-injection and surfactant-alternating-gas floods, a new displacement mechanism is introduced to better relate actual displacement conditions with observed macroscopic mobility data. This mechanism emphasizes the role of liquid rate in actual displacement processes and a mostly static gas saturation (independent of gas rate) in altering liquid relative permeability and diverting injected liquid into lower permeability zones. / text

Page generated in 0.0954 seconds