Spelling suggestions: "subject:"emprovement off emergency department"" "subject:"emprovement off emergency epartment""
1 |
Improving Emergency Department performance using Discrete-event and Agent-based SimulationKaushal, Arjun 14 February 2014 (has links)
This thesis investigates the causes of the long wait-time for patients in Emergency department (ED) of Victoria General Hospital, and suggests changes for improvements. Two prominent simulation techniques have been used to replicate the ED in a simulation model. These are Discrete-event simulation (DES) and Agent-based modeling (ABM). While DES provides the basic modeling framework ABM has been used to incorporate human behaviour in the ED. The patient flow in the ED has been divided into 3 phases: input, throughput, and output.
Model results show that there could be multiple interventions to reduce time taken to be seen by the doctor for the first time (also called WTBS) either in the output phase or in the input phase. The model is able to predict that a reduction in the output phase would cause reduction in the WTBS but it is not equipped to suggest how this reduction can be achieved.
To reduce WTBS by making interventions in the input phase this research proposes a strategy called fast-track treatment (FTT). This strategy helps the model to dynamically re-allocate resources if needed to alleviate high WTBS. Results show that FTT can reduce WTBS times by up-to 40%.
|
2 |
Improving Emergency Department performance using Discrete-event and Agent-based SimulationKaushal, Arjun 14 February 2014 (has links)
This thesis investigates the causes of the long wait-time for patients in Emergency department (ED) of Victoria General Hospital, and suggests changes for improvements. Two prominent simulation techniques have been used to replicate the ED in a simulation model. These are Discrete-event simulation (DES) and Agent-based modeling (ABM). While DES provides the basic modeling framework ABM has been used to incorporate human behaviour in the ED. The patient flow in the ED has been divided into 3 phases: input, throughput, and output.
Model results show that there could be multiple interventions to reduce time taken to be seen by the doctor for the first time (also called WTBS) either in the output phase or in the input phase. The model is able to predict that a reduction in the output phase would cause reduction in the WTBS but it is not equipped to suggest how this reduction can be achieved.
To reduce WTBS by making interventions in the input phase this research proposes a strategy called fast-track treatment (FTT). This strategy helps the model to dynamically re-allocate resources if needed to alleviate high WTBS. Results show that FTT can reduce WTBS times by up-to 40%.
|
Page generated in 0.1432 seconds