• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur les inégalités de Sobolev logarithmiques en théorie de l'information et pour des systèmes de spins conservatifs en mécanique statistique

Chafai, Djalil 17 May 2002 (has links) (PDF)
1°) Utilisation d'inégalités fonctionnelles de Bobkov pour l'établissement de principes de grandes déviations quasi-gaussiens. <br /><br />2°) Etude de l'inégalité de Sobolev logarithmique en théorie de l'information. <br /><br />3°) Etablissement d'inégalités de Poincaré et de Sobolev logarithmiques pour certaines dynamiques de Kawasaki et Glauber pour un modèle à spins continus en mécanique statistique.
2

Inégalités de Sobolev logarithmiques pour des problèmes d'évolution non linéaires

Malrieu, Florent 11 December 2001 (has links) (PDF)
Nous étudions des équations aux dérivées partielles non linéaires du type McKean-Vlasov. Nous leur associons des systèmes de particules en interaction de type champ moyen pour lesquels nous établissons des inégalités de Sobolev logarithmiques à temps fini. Grâce à un résultat supplémentaire de propagation du chaos, nous déduisons, dans certains cas, le comportement en temps long de l'équation non linéaire en fonction de celui du système de particules. Enfin, nous établissons des intervalles de confiance exacts pour la convergence de méthodes de Monte-Carlo pour les schémas d'Euler explicites et implicites associés à des processus de diffusion. Ces résultats s'appliquent notamment pour les systèmes de particules cités plus haut.
3

Largeur de seuil dans les lois du Zéro-Un

Rossignol, Raphaël 27 June 2005 (has links) (PDF)
Ce travail de thèse prolonge les développements récents, dûs à Talagrand, Friedgut et Kalai de l'étude des conditions générales assurant l'existence d'un phénomène de seuil. Dans une première partie, nous apportons une contribution à l'unification du cadre théorique des phénomènes de seuil, d'une part en reliant rigoureusement le cadre originel des ``fonctions seuils'' introduit par Erdös et Rényi, celui des travaux de Friedgut et Kalai et la concentration du temps d'atteinte de la propriété qui suit le phénomène de seuil; d'autre part en initiant une recherche sur la stabilité des phénomènes de seuil par trois types d'opérations: l'union, l'intersection et le produit tensoriel. On obtient ainsi un moyen simple de construire des largeurs de seuil d'ordres variés. Dans une seconde partie, on optimise la majoration générale de la largeur de seuil d'une propriété croissante et symétrique, à l'aide de l'inégalité de Sobolev logarithmique sur l'hypercube discret.
4

Inégalités de Sobolev logarithmiques et hypercontractivité en mécanique statistique et en E.D.P.

Gentil, Ivan 18 December 2001 (has links) (PDF)
Dans cette thèse nous nous intéressons à des inégalités fonctionnelles comme les inégalités de Poincaré, Sobolev logarithmique, Sobolev, et celles appelées inégalités de transport. Dans un premier temps, nous étudions les inégalités de Poincaré et de Sobolev logarithmique pour des modèles de mécanique statistique. Cette étude nous permet de donner une nouvelle classe de phases telle que les mesures de Gibbs associées satisfassent à ces deux inégalités. Nous étudions dans un second temps, les inégalités de Sobolev logarithmique et de Sobolev par le biais des équations de Hamilton-Jacobi. Nous montrons, de la même façon que Gross en 1975 pour les semi-groupes de diffusion, l'équivalence entre l'inégalité de Sobolev logarithmique et l'hypercontractivité des solutions des équations de Hamilton-Jacobi. Cette équivalence permet de montrer, par une nouvelle méthode que celle utilisée par Otto et Villani, que l'inégalité de Sobolev logarithmique implique une inégalité de transport quadratique. De la même manière que Varopoulos en 1985 pour les semi-groupes de diffusion, nous donnons le lien entre l'inégalité de Sobolev et l'ultracontractivité des solutions des équations de Hamilton-Jacobi. Pour finir nous étudions les inégalités de transport dans un cadre général. Cette étude permet d'une part de donner le lien entre des inégalités de Sobolev logarithmiques modifiées et des inégalités de transport particulières et d'autre part de donner un exemple d'inégalité de transport quadratique pour une mesure en dimension infinie, la mesure de Wiener.
5

Inégalités fonctionnelles liées aux formes de Dirichlet. De l'isopérimétrie aux inégalités de Sobolev.

Fougères, Pierre 18 October 2002 (has links) (PDF)
Les semi-groupes de Markov ergodiques permettent d'approcher des mesures de probabilité au moyen d'inégalités fonctionnelles. L'objectif de la thèse est l'étude de certaines de ces inégalités, de l'isopérimétrie gaussienne aux inégalités de Sobolev. Nous cherchons essentiellement à établir des liens entre elles, à déterminer leurs constantes optimales et à obtenir des critères assurant leur existence. Le travail est divisé en trois parties. Dans la première , nous nous intéressons aux liens entre les inégalités de Sobolev logarithmiques (SL) et celles d'?isopérimétrie gaussienne de Bobkov (IGB). Nous montrons qu'?un semi-groupe de courbure minorée (éventuellement négative) qui satisfait à (SL) vérifie également une inégalité (IGB). Nous obtenons ainsi une inégalité (IGB) pour certains systèmes de spins. Dans la seconde partie, nous montrons que la constante de Poincaré d'une mesure de probabilité log-concave sur la droite réelle est universellement comparable au carré de la distance moyenne à la médiane. La preuve repose sur un calcul de variations dans l'ensemble des fonctions convexes. La dernière partie est consacrée à de nouveaux critères conduisant aux inégalités de Sobolev lorsque le critère de courbure-dimension (CD) de Bakry et Emery est mis en défaut. La technique utilisée repose sur la construction (au moyen de changements conformes de métrique et tensorisation) d?'une structure de Dirichlet en dimension supérieure qui satisfait un critère (CD) et se projette sur la structure de départ.

Page generated in 0.0247 seconds