• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 12
  • 12
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Novel sol-gel titania-based hybrid organic-inorganic coatings for on-line capillary microextraction coupled to high-performance liquid chromatography

Kim, Tae-Young 01 June 2006 (has links)
Novel sol-gel titania-poly(dimethylsiloxane) (TiO2-PDMS) and titania-silica-N-(triethoxysilylpropyl)-O-polyethylene oxide urethane (TiO2-SiO2-TESP-PEO) coatings were developed for capillary microextraction (CME) to perform on-line preconcentration and HPLC analysis of trace impurities in aqueous samples. Due to chemical inertness of titania, effective covalent binding of a suitable organic ligand to its surface is difficult via conventional surface modification methods. In this research, sol-gel chemistry was employed to chemically bind hydroxy-terminated poly(dimethylsiloxane) (PDMS) and N-(triethoxysilylpropyl)-O-polyethylene oxide urethane (TESP-PEO) to sol-gel titania and sol-gel titania-silica network, respectively. A method is presented describing in situ preparation of the titania-based sol-gel PDMS and TESP-PEO coatings and their immobilization on the inner surface of a fused-silica microextraction capillary. To perform on-line CME-HPLC, the sol-gel TiO2-PDMS or TiO2-SiO2-TESP-PEO capillarywas installed in the HPLC injection port as an external sampling loop, and a conventionalHPLC separation column was used for the liquid chromatographic separation. The sol-gel TiO2-PDMS-coated microextraction capillary was used for on-line CME-HPLC analysis of non-polar and moderately polar analytes, and the sol-gel coatings showed excellent pH (1-13), and solvent (acetonitrile and methanol) stabilities under elevated temperatures (150 C) over analogous non-sol-gel silica-based coatings. Extraction of highly polar analytes, especially from aqueous phases is not an easy task. However, the sol-gel TiO2-SiO2-TESP-PEO-coated capillaries showed excellent capability of extracting underivatized highly polar analytes from aqueous samples. This opens the possibility to employ sol-gel titania-based polar coatings for solvent-free extraction and trace analysis of target analytes in environmental and biomedical matrices. To our knowledge, this is the first research on the use of sol-gel titania (or titania-silica)-based organic-inorganic materials as a sorbent in capillary microextraction. The newly developed sol-gel titania (or titania-silica)-based organic-inorganic hybrid extraction media provides an effective solution to coupling CME with HPLC (CME-HPLC), and this can be expected to become a powerful analytical tool in environmental investigations, proteomic research, early disease diagnosis and biomarker research. Being a combination of a highly efficient solvent free sample preconcentration technique (CME) and a powerful separation method (HPLC), CME-HPLC poses to become a key analytical tool in solving complex chemical, environmental, and biomedical problems involving complex matrices.
12

Ionic Liquid-Mediated Sol-Gel Sorbents for Capillary Microextraction and Challenges in Glass Microfabrication

Shearrow, Anne M 18 May 2009 (has links)
Three ionic liquids (ILs), trihexyltetradecylphosphonium tetrafluoroborate (TTPT), N-butyl-4-methylpyridinium tetrafluoroborate (BMPT), and 1-methyl-3- octylimidazolium tetrafluoroborate (MOIC), were utilized to prepare sol- gel sorbent coatings. Non-polar polydimethylsiloxane (PDMS) and polar poly(ethylene glycol) (PEG), poly(tetrahydrofuran) (PolyTHF) and bis[(3-methyldimethoxy-silyl)propyl] polypropylene oxide (BMPO) polymers were employed to develop novel ionic liquidmediated sol- gel hybrid organic- inorganic sorbents. The novel sorbents were first tested as coatings for capillary microextraction off-line hyphenated to gas chromatography. To gain an understanding of the role of the ionic liquids in the sol-gel process, the preconcentration abilities of these novel coatings were investigated for several classes of compounds utilizing CME-GC. This was accomplished by comparing GC peak areas of a series of analytes extracted on the ionic liquid mediated sol-gel CME coatings with that of analogous peak areas obtained on sol- gel coatings prepared without the ionic liquid. The morphology of these coatings was compared using scanning electron microscopy (SEM) imaging data. Overall, the ionic liquid-mediated sol- gel coatings had more porous morphologies than the sol-gel coatings prepared without ionic liquid. The PDMS andBMPO sol-gel coatings prepared with ionic liquid in the sol solution provided enhanced extraction sensitivity reflected in higher preconcentration effects and lower detection limits than the sol- gel coatings prepared without the ionic liquid. The polar IL-mediated BMPO sol- gel sorbent was further investigated by exploring the extraction profile and thermal stability of these coatings. A further application of ionic liquid-mediated sol-gel sorbents could be as stationary phases in a microchip-based separation system. Towards this goal, microfluidic channels were fabricated in glass substrates using microelectromechanical engineering. Spiral and serpentine channels were etched in Pyrex and fused silica wafers using wet and deep reactive ion etching (DRIE) techniques. Microfabrication protocols such as the use of hard mask and etching times were investigated for both techniques. DRIE produced microfluidic channels that had an etch quality that was superior to wet etched channels. Thus, the ultimate microchip-based separation system should by fabricated using DRIE.

Page generated in 0.0141 seconds