• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • Tagged with
  • 19
  • 19
  • 9
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crank Angle Based Virtual Cylinder Pressure Sensor in Heavy-Duty Engine Application / Skattning av cylindertryck utifrån vevvinkelhastighet

Gustafsson, Mikael January 2015 (has links)
The in-cylinder pressure is an important signal that gives information about the combustion process. To further improve engine performance, this information can be used as a feedback signal in a control system. Usually a pressure sensor is mounted in the cylinder to extract this information. A drawback with pressure sensors is that they are expensive and have issues with aging. This master’s thesis investigates the possibility to create a virtual sensor to estimate in-cylinder pressure based on crank angle degree sensor (CAD-sensor) data and physical models of the heavy-duty engine. Instead of using the standard mounted CAD-sensor an optical high-precision sensor measures the elapsed time between equidistant angles. Based on this signal the instantaneous angular acceleration was estimated. Together with the inertia of the crankshaft, connecting rods and pistons, an estimation of the engine torque was calculated. To be able to extract in-cylinder pressure from the estimated torque, knowledge about how the in-cylinder pressure signal propagates in the drivetrain to accelerate the flywheel needs to be known. Two engine models based on the torque balance on the crankshaft are presented. The fundamental difference between them is how the crankshaft is modeled, rigid body or spring-mass-damper system. The latter captures torsional effects of the crankshaft. Comparisons between the estimated torque from sensor data and the two engine models are presented. It is found that torsional effects of the crankshaft is present at normal engine speeds and has a significant influence on the flywheel torque. A separation of the gas torque contribution from one cylinder is done with CAD-sensor data together with the rigid body engine model. The in-cylinder pressure is then estimated by using the inverse crank-slider function and a Kalman filter estimator. The estimated pressure captures part of the compression and most of the expansion at engine speeds below 1200 RPM. Due to the crank-slider geometry the pressure signal disappears at TDC. The torsional effects perturb the estimated pressure during the gas exchange cycle. Further development must be made if this method is to be used on heavy-duty applications in the future.
2

Estimation of the Residual Gas Fraction in an HCCI-engine using Cylinder Pressure / Uppskattning av andelen residual gas i en HCCI-motor med hjälp av cylindertrycket

Ivansson, Niklas January 2003 (has links)
<p>The residual gas fraction is an important parameter to get good performance with high efficiency and low emissions in the HCCI-engine. </p><p>The goal in this thesis is to formulate an algorithm for estimation of the residual gas fraction based on the cylinder pressure. The estimation is improved if also the exhaust gas temperature is used together with the cylinder pressure. </p><p>The formulated algorithm has then been tested on data from a single cylinder engine running in HCCI-mode during steady state conditions. An error of 4% was noted compared with the residual gas fraction obtained from simulations. </p><p>The thesis also investigates the effects of some possible error sources.</p>
3

Cylinder-by-Cylinder Torque Model of an SI-Engine for Real-Time Applications / Cylinderindividuell Momentmodell för Realtidstillämpningar

Hashemzadeh Nayeri, Mohit January 2005 (has links)
<p>In recent years Hardware-in-the-Loop HiL, has gained more and more</p><p>popularity within the vehicle industry. This is a more cost effective research alternative, as opposed to the tests done the traditional way, since in HiL testing the idea is to test the hardware of interest, such as an electronic control unit, in a simulated (or partially simulated) environment which closely resembles the real-world environment.</p><p>This thesis is ordered by Daimler Chrysler AG and the objective of this thesis is the developing of a cylinder-by-cylinder model for the purpose of emulation of misfire in a four-stroke SI-engine. This purpose does not demand a precise modelling of the cylinder pressure but rather an adequate modelling of position and amplitude of the torque produced by each cylinder. The model should be preferebly computaionally tractable so it can be run on-line. Therefore, simplifications are made such as assuming the rule of a homogenous mixture, pressure and temperature inside the cylinder at all steps, so the pressure model can be analytical and able to cope with the real-time demand of the HiL. The model is implemented in Simulink and simulated with different sample rates and an improvement is to be seen as the sample rate is decreased.</p>
4

Cylinder-by-Cylinder Torque Model of an SI-Engine for Real-Time Applications / Cylinderindividuell Momentmodell för Realtidstillämpningar

Hashemzadeh Nayeri, Mohit January 2005 (has links)
In recent years Hardware-in-the-Loop HiL, has gained more and more popularity within the vehicle industry. This is a more cost effective research alternative, as opposed to the tests done the traditional way, since in HiL testing the idea is to test the hardware of interest, such as an electronic control unit, in a simulated (or partially simulated) environment which closely resembles the real-world environment. This thesis is ordered by Daimler Chrysler AG and the objective of this thesis is the developing of a cylinder-by-cylinder model for the purpose of emulation of misfire in a four-stroke SI-engine. This purpose does not demand a precise modelling of the cylinder pressure but rather an adequate modelling of position and amplitude of the torque produced by each cylinder. The model should be preferebly computaionally tractable so it can be run on-line. Therefore, simplifications are made such as assuming the rule of a homogenous mixture, pressure and temperature inside the cylinder at all steps, so the pressure model can be analytical and able to cope with the real-time demand of the HiL. The model is implemented in Simulink and simulated with different sample rates and an improvement is to be seen as the sample rate is decreased.
5

Estimation of the Residual Gas Fraction in an HCCI-engine using Cylinder Pressure / Uppskattning av andelen residual gas i en HCCI-motor med hjälp av cylindertrycket

Ivansson, Niklas January 2003 (has links)
The residual gas fraction is an important parameter to get good performance with high efficiency and low emissions in the HCCI-engine. The goal in this thesis is to formulate an algorithm for estimation of the residual gas fraction based on the cylinder pressure. The estimation is improved if also the exhaust gas temperature is used together with the cylinder pressure. The formulated algorithm has then been tested on data from a single cylinder engine running in HCCI-mode during steady state conditions. An error of 4% was noted compared with the residual gas fraction obtained from simulations. The thesis also investigates the effects of some possible error sources.
6

Estimation of In-cylinder Trapped Gas Mass and Composition

Nikkar, Sepideh January 2017 (has links)
To meet the constantly restricting emission regulations and develop better strategiesfor engine control systems, thorough knowledge of engine behavior is crucial.One of the characteristics to evaluate engine performance and its capabilityfor power generation is in-cylinder pressure. Indeed, most of the diagnosis andcontrol signals can be obtained by recording the cylinder pressure trace and predictingthe thermodynamic variables [3].This study investigates the correlation between the in-cylinder pressure andtotal trapped gas mass [10] with the main focus on estimating the in-cylinder gasmass as a part of a lab measuring procedure using the in-cylinder pressure sensors,or as a real-time method for implementation in an engine control unit thatare not equipped with the cylinder pressure sensors. The motivation is that precisedetermination of air mass is essential for the fuel control system to convey themost-efficient combustion with lower emissions delivered to the after-treatmentsystem [10].For this purpose, a six-cylinder Diesel engine is used for recording the enginespeed, engine torque, measuring the cylinder pressure profile resolved bythe crank angle, intake and exhaust valve phasing as well as intake and exhaustmanifold pressures and temperatures. Next, the most common ways of estimatingthe in-cylinder trapped gas mass are studied and the most reliable ones areinvestigated in-depth and a model with the acceptable accuracy in different operatingconditions is proposed, explained and implemented. The model in has athermodynamics basis and the relative errors is lower than 3% in all the investigatedtests. Afterwards, the most important findings are highlighted, the sourcesof errors are addressed and a sensitivity analysis is performed to evaluate themodel robustness. Subsequently, method adjustment for other operating conditionsis briefly explained, the potential future work is pointed and a complete setof results is presented in Appendix B.
7

Modelingflywheel-Speed Variations Based on Cylinder Pressure / Att modellera svänghjulshastighet baserat på cylindertryck

Nilsson, Magnus January 2004 (has links)
<p>Combustion supervision by evaluating flywheel speed variations is a common approach in the automotive industry. This often involves preliminary measurements. An adequate model for simulating flywheel speed can assist to avoid some of these preliminary measurements. </p><p>A physical nonlinear model for simulating flywheel speed based on cylinder pressure information is investigated in this work. Measurements were conducted at Scania in a test bed and on a chassis dynamometer. The model was implemented in MATLAB/Simulink and simulations are compared to measured data. The first model can not explain all dynamics for the measurements in the test bed so extended models are examined. A model using a dynamically equivalent model of the crank-slider mechanism shows no difference from the simple model, whereas a model including a driveline can explain more from the test-bed measurements. When simulating the setups used at the chassis dynamometer, the simplest model works best. Yet, it is not very accurate and it is proposed that optimization of parameter values might improve the model further. A sensitivity analysis shows that the model is fairly robust to parameter changes.</p><p>A continuation of this work might include optimization to estimate parameter values in the model. Investigating methods for combustion supervision may also be a future issue.</p>
8

Modelingflywheel-Speed Variations Based on Cylinder Pressure / Att modellera svänghjulshastighet baserat på cylindertryck

Nilsson, Magnus January 2004 (has links)
Combustion supervision by evaluating flywheel speed variations is a common approach in the automotive industry. This often involves preliminary measurements. An adequate model for simulating flywheel speed can assist to avoid some of these preliminary measurements. A physical nonlinear model for simulating flywheel speed based on cylinder pressure information is investigated in this work. Measurements were conducted at Scania in a test bed and on a chassis dynamometer. The model was implemented in MATLAB/Simulink and simulations are compared to measured data. The first model can not explain all dynamics for the measurements in the test bed so extended models are examined. A model using a dynamically equivalent model of the crank-slider mechanism shows no difference from the simple model, whereas a model including a driveline can explain more from the test-bed measurements. When simulating the setups used at the chassis dynamometer, the simplest model works best. Yet, it is not very accurate and it is proposed that optimization of parameter values might improve the model further. A sensitivity analysis shows that the model is fairly robust to parameter changes. A continuation of this work might include optimization to estimate parameter values in the model. Investigating methods for combustion supervision may also be a future issue.
9

Virtual Sensors for Combustion Parameters Based on In-Cylinder Pressure / Skattning av förbränningsparametrar baserat på cylindertryckmätning

Johansson, Tobias January 2015 (has links)
Typically the combustion in engines are open-loop controlled. By using an in-cylinder pressure sensor it is possible to create virtual sensors for closed-loop combustion control (CLCC). With CLCC it is possible to counteract dynamic effects as component ageing, fuel type and cylinder variance. A virtual sensor system was implemented based on a one-zone heat-release analysis, including signal processing of the pressure sensor input. A parametrisation of the heat-release based on several Vibe functions was implemented with good results. The major focus of the virtual sensor system was to perform a tolerance analysis on experimental data, where typical error sources in a production heavy-duty vehicle were identified and their effect on the estimates quantified. It could be concluded that estimates are very much dependent on the choice of heat-release and specific heat ratio models. Especially crank angle phasing has a large impact on estimation performance, stressing the importance of accounting for crankshaft torsion in production vehicles. Biodiesel advances the combustion angle and give a lower IMEP and total heat amount compared to standard diesel. However, error sensitivity is not affected. Further investigations must be made on improving the signal processing in terms of gain error compensation and filtering. Also a better understanding of how errors propagate between subsystems in a CLCC system is required for successful implementation.
10

Optimal air and fuel-path control of a diesel engine

Yang, Zhijia January 2014 (has links)
The work reported in this thesis explores innovative control structures and controller design for a heavy duty Caterpillar C6.6 diesel engine. The aim of the work is not only to demonstrate the optimisation of engine performance in terms of fuel consumption, NOx and soot emissions, but also to explore ways to reduce lengthy calibration time and its associated high costs. The test engine is equipped with high pressure exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). Consequently, there are two principal inputs in the air-path: EGR valve position and VGT vane position. The fuel injection system is common rail, with injectors electrically actuated and includes a multi-pulse injection mode. With two-pulse injection mode, there are as many as five control variables in the fuel-path needing to be adjusted for different engine operating conditions.

Page generated in 0.0559 seconds