Spelling suggestions: "subject:"inpipe"" "subject:"cnvpipe""
271 |
Soil vapor extraction enhanced with prefabricated vertical drainsCollazos, Omaira M. January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 198-204). Also available on the Internet.
|
272 |
Soil vapor extraction enhanced with prefabricated vertical drains /Collazos, Omaira M. January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 198-204). Also available on the Internet.
|
273 |
Cement Pipe for Small Irrigating Systems and Other PurposesSmith, G. E. P. 01 July 1907 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
274 |
Vortex-induced vibration of offshore risers : theoretical modelling and analysisKeber, Marko January 2012 (has links)
No description available.
|
275 |
Plant and rodent communities of Organ Pipe Cactus National MonumentWarren, Peter Lynd January 1979 (has links)
No description available.
|
276 |
The white-tailed deer of the Organ Pipe Cactus National Monument, ArizonaHenry, Robert Stephen January 1979 (has links)
No description available.
|
277 |
Observation of laminar-turbulent transition of a yield stress fluid in Hagen-Poiseuille flowGuzel, Bulent 05 1900 (has links)
The main focus of this work is to investigate experimentally the transition to turbulence of a yield stress shear thinning fluid in Hagen-Poiseuille flow. By combining direct high speed imaging of the flow structures with Laser Doppler Velocimetry (LDV), we provide a systematic description of the different flow regimes from laminar to fully turbulent. Each flow regime is characterized by measurements of the radial velocity, velocity fluctuations, and turbulence intensity profiles. In addition we estimate the autocorrelation, the probability distribution, and the structure functions in an attempt to further characterize transition. For all cases tested, our results indicate that transition occurs only when the Reynolds stresses of the flow equals or exceeds the yield stress of the fluid, i.e. the plug is broken before transition commences. Once in transition and when turbulent, the behavior of the yield stress fluid is somewhat similar to a (simpler) shear thinning fluid. We have also observed the shape of slugs during transition and find that their leading edges to be highly elongated and located off the central axis of the pipe, for the non-Newtonian fluids examined. Finally we present a new phenomenological approach for quantifying laminar-turbulent transition in pipe flow. This criterion is based on averaging a local Reynolds number to give ReG. Our localised parameter shows strong radial variations that are maximal at approximately the radial positions where puffs first appear during the first stages of turbulent transition.
|
278 |
Evaluation of repair design on corrosion-damaged steel pipe piles using welded patch plates under compressionItoh, Yoshito, Kitane, Yasuo, Chen, Xiao 01 August 2011 (has links)
No description available.
|
279 |
EVALUATION OF STRENGTH RECOVERY OF REPAIRED STEEL PIPE PILESItoh, Y., Watanabe, N., Kitane, Y. 11 1900 (has links)
No description available.
|
280 |
Response of Reinforced Concrete and Corrugated Steel Pipes to Surface LoadLay, Geoff 09 May 2012 (has links)
Full-scale simulated live load tests were conducted in a controlled laboratory setting using a single-axle frame on 600-mm-inner-diameter reinforced concrete pipe (RCP) and corrugated steel pipe (CSP) when buried in dense, well-graded sand and gravel. Measurements of the RCP at nominal and working forces and beyond are reported for 0.3, 0.6 and 0.9 m of soil cover above the pipe crown. The RCP experienced no cracking when buried at 0.3 m under nominal and working CL-625 and CL-800 single-axle design loads. At these loads, the vertical contraction of the pipe diameter was less than 0.08 and 0.10 mm and the largest tensile strains in the pipe were 75 and 100 με (50-60% of the cracking strain), respectively. A 0.15 (±0.05)-mm-wide axial crack developed at the inner crown in the presence of a 6 kNm/m circumferential bending moment (70% of the theoretical ultimate moment capacity) at the fully factored CL-625 load. This crack did not propagate or widen from 3 series of cyclic load-unload tests. At 1300 kN of applied load the change in pipe diameter was less than 3.5 mm. Increasing soil cover from 0.3 to 0.6 to 0.9 m reduced the circumferential crown bending moment from 6.0 to 3.9 to 2.1 kNm/m, respectively, at 400 kN of axle load. A 1.6- and a 2.8-mm-thick CSP were also subjected to axle loading. No yielding or limit states occurred in the 1.6-mm-thick CSP when buried 0.9-m-deep. However, at 0.6 m of cover a 300 kN axle load caused local yielding at the pipe crown. Increasing soil cover from 0.6 to 0.9 m decreased the vertical diameter change from -3.0 to -1.2 mm and the crown bending moment from 0.7 to 0.2 kNm/m (75% and 20% of the yield moment), respectively, at a 250 kN axle load. Deflections of the thicker CSP were less than the thinner pipe below the CL-625 single-axle load, however further increases in applied load produced a greater response in the thicker pipe, likely due to a haunch support issue. Shallow axle loading produced a greater 3-dimensional response and a larger bending effect in both CSPs. / Thesis (Master, Civil Engineering) -- Queen's University, 2012-05-06 15:10:12.754
|
Page generated in 0.0393 seconds