Spelling suggestions: "subject:"insitu measurement"" "subject:"ensitu measurement""
1 |
Quantitative investigation of solidification in Ni-based superalloys by in-situ X-ray imaging techniques / X線イメージング技術によるNi基超合金の凝固現象の定量評価Nam, Cheolhee 25 November 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22127号 / 工博第4657号 / 新制||工||1726(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 安田 秀幸, 教授 辻 伸泰, 教授 宇田 哲也 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
2 |
Mesure in-situ du comportement des pièces en situation d'usinage à l'aide d'une mesure optique / In-situ measurement of workpiece behaviour in machining situations using optical measurementRebergue, Guillaume 10 December 2018 (has links)
Les pièces de structure aéronautique utilisées dans l’aéronautique sont fabriquées en plusieurs étapes. Des étapes, comme le traitement thermique, génèrent des contraintes résiduelles. Les enlèvements de matière réalisés par les opérations d’usinage peuvent alors conduire à la réorganisation des contraintes résiduelles dans la matière et ainsi à la déformation de la pièce. La mesure in-situ de ces déformations devient nécessaire lorsque ce phénomène est étudié. Ces travaux de thèse abordent cette problématique dans le cadre du projet SIMP-Aero. L’objectif de ces travaux de thèse est d’adapter la méthode de corrélation d’images numériques à la mesure de la déformation de pièce pendant l’usinage, c’est-à-dire dans un centre d’usinage. Pour cela, plusieurs améliorations sont apportées à la méthode. Premièrement, les mouvements du système optique sont pris en compte afin que ceux-ci n’altère pas la qualité des mesures. Ensuite, les copeaux présents sur les images sont détectés et filtrés par un algorithme. Au final, la méthode développée permet de mesurer des champs de déplacement durant toute la séquence d’usinage, sans devoir l’interrompre, avec une incertitude de mesure de l’ordre du centième de millimètre. / Structural aluminum alloy parts used in aeronautics are manufactured in several steps, from forming processes and heat treatments to final machining. Some of the process steps induce residual stresses. The material removal during machining release these residual stresses and thus, leads to the part deformation. The in-situ measurement of these deformations becomes necessary when this phenomenon is studied. The present work address this problematic in the context of the ANR SIMP-Aero Project. It aims to define a reliable experimental technique dedicated to the measurement of part deformations during machining of large aeronautical parts. The backbone of the technique relies on Digital Image Correlation (DIC). Mainly as a consequence of the harsh constraints environment of machining, the customization of DIC is required. First, movements of the optical system are quantified and compensated for the proper measurement of the workpiece displacement. Then, the metal chips that fly between the observed surface and the acquisition system are detected and filtered by the algorithm. Finally, the developed method enables the measurement of displacement fields throughout the whole machining sequence, without interrupting it, and a measurement uncertainty of around one hundredth of a millimeter is ensured.
|
3 |
Monitorování obsahu Cs-137 spektrometrickým měřením v půdě / Cs-137 content monitoring by spectrometric measurement in soilLEPIČ, Daniel January 2019 (has links)
The aim of the thesis is to compare the results from in situ spectrometry and laboratory determination of the area activity of Cs-137 in samples taken from uncultivated soils. To fulfil the goal, the research question has been determined: Are the results from in situ measurement of the area activity of Cs-137 in uncultivated soil comparable with the results from laboratory measurement of collected soil samples? The theoretical part of the work has been written based on research of book publications, foreign scientific articles and electronic sources, which deal with the issue of radioactivity and its impact on the environment and the principle of semiconductor gamma spectrometry. The practical part of the work deals with the spectrometric measurement using in situ method and the laboratory determination of the area activity of Cs-137 in the soil samples using a semiconductor gamma spectrometer. The measurement and the soil sampling took place in the territory of the Šumava National Park and its adjacent areas in Pilsen Region. There were selected five locations (Nová Hůrka, Prášily, Srní, Nový Brunst and Hadí vrh). By in situ spectrometric measurement the highest values were determined of the area activity of Cs-137 in the location Nová Hůrka (19526 Bq / m2) and the lowest in the location Hadí vrh (5398 Bq / m2). The spectrometric measurements of the soil samples in the laboratory revealed the highest values of the area activity of Cs-137 in the sample from the location Nová Hůrka (10000 Bq / m2) and the lowest values of Cs-137 in the location Hadí vrh (2060 Bq / m2). The contribution of this work is the comparison of in situ spectrometric measurement with the measurement of taken soil samples using the gamma semiconductor spectrometer. The results of this monitoring can provide data on the radiation situation in individual locations in Šumava. By the comparison of the results of the area activity of Cs-137, there has been found a correlation between in situ spectrometric measurements and the laboratory measurements of the soil samples. The results of the area activity of Cs-137 are in an order of magnitude comparable. The differences between the results are probably caused by the measurement conditions.
|
4 |
Novel Methods in Ball Bond Reliability Using In-Situ Sensing and On-Chip MicroheatersKim, Samuel 06 November 2014 (has links)
Wire bonding is the process of creating interconnects between the circuitry on a microchip and PCB boards or substrates so that the microchip can interact with the outside world. The materials and techniques used in this bonding process can cause a wide variation in bond quality, so wire bond reliability testing is very important in determining the quality and longevity of wire bonds. Due to the fact that microchips are encased in protective resins after bonding and their substrates attached to the larger device as a whole, once any single wire bond fails then it could jeapordize the entire device as the wire bonds cannot be individually replaced or fixed. Current methods of reliability testing are lengthy and often destroy the entire sample in the process of evaluation, so the availability of novel non-destructive, real-time monitoring methods as well as accelerated aging could reduce costs and provide realistically timed tests of novel wire bond materials which do not form Intermetallic compounds (IMCs) as rapidly as Au wire on Al substrates.
In this thesis, five new chip designs for use in wire bond reliability testing are reported, focusing on the first joint made in a wire bond, called the ball bond. These chips are scaled either to test up to 55 test bonds simultaneously or just one at a time, introducing different requirements for microchip infrastructure capabilities, such as on-chip sensing/data bus, multiplexer, and switches able to operate under High Temperature Storage (HTS) which ranges from temperatures of 150-220 ??C. There are different heating requirements for each of these microchips, needing to be heated externally or containing on-chip microheaters to heat only the ball bond under test, and not the rest of the microchip or surrounding I/O pads. Of the five chip designs, sample chips were produced by an external company. Experimental studies were then carried out with two of these chip designs. They were specifically made to test novel methods of determining ball bond reliability using in-situ, non-destructive sensing, in real-time, while the ball bond undergoes thermal aging.
Pad resistance as an analysis tool for ball bond reliability is proposed in this thesis as a new way of evaluating ball bond quality and allows for the testing of electrical connection without the need for specialized measurement probes or difficult bonding processes that contact resistance measurements require. Results are reported for pad resistance measurements of a ball bond under very high temperature storage (VHTS) at 250 ??C, a temperature exceeding typical HTS ranges to accelerate aging. Pad resistance measurements are taken using the four-wire measurement method from each corner of the bond pad, while reversing current direction every measurement to remove thermo-electric effects, and then calculating the average square resistance of the pad from this value.
The test ball bond is aged using a novel on-chip microheater which is a N+ doped Si resistive heater located directly underneath the bond pad, and can achieve temperatures up to 300 ??C while not aging any of the I/O pads surrounding it, which are located ~180 ??m away. A 50 ??? resistor is placed 60 ??m away from the heater to monitor the temperature. The use of a microheater allows the aging of novel wire types at temperatures much higher than those permitted for microchip operation while thermally isolating the test bond from the sensing and power bonds, which do not need to be aged. Higher temperatures allow the aging process to be sped up considerably. The microheater is programmatically cycled between 250 ??C (for 45 min) and 25 ??C (for 15 min) for up to 200 h or until the pad resistance measurements fail due breakdown of the bonding pad. Intermetallic compounds forming between the ball bond and the pad first become visible after a few hours, and then the pad becomes almost completely consumed after a day. The pad resistance is measured every few seconds while the sample is at room temperature, and the increase in pad resistance agrees with the fact that Au/Al IMC products are known to have much higher resistance than both pure Au or Al.
Also discussed are some aging results of Au wires and Pd coated Cu (PCC) wires bonded to Al bonding pads and aged at a temperature of 200 ??C in an oven for 670 h. The oven aged Au ball bonds also saw IMC formation on the surface of the bonding pad, much like the microheater tests. The PCC ball bonds became heavily oxidized due to lack of Pd on the surface of the ball, the wire portions did not oxidize much.
In conclusion, the new structures have been demonstrated to age ball bonds faster than with conventional methods while obtaining non-destructive data. Specifically, the new microheater ages a test bond at an accelerated rate without having an observable effect on the I/O connections used to monitor the test bond. Pad resistance measurements correlate to the aging of the test bond and ensure the electrical integrity of the joint is checked.
|
5 |
Time-Resolved and In-Situ Study on Evolution of Spheroidal Graphite Nodules and Volume Change During Solidification in Ductile Cast Iron / ダクタイル鋳鉄の凝固過程における球状化黒鉛の形成と体積変化の時間分解その場観察Kiattisaksri, Chatcharit 24 September 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22067号 / 工博第4648号 / 新制||工||1725(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 安田 秀幸, 教授 辻 伸泰, 教授 宇田 哲也 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
6 |
<b>USE OF ENERGY MONITORING TO EVALUATE INDOOR ENVIRONMENTAL QUALITY IN RESIDENTIAL BUILDINGS</b>Hongbo Lu (18419346) 22 April 2024 (has links)
<p dir="ltr">As the urbanization trend prevails worldwide, more people are moving to major metropolitan areas, causing housing resources to be in urgent demand. Tiny homes, designed to offer a minimalist lifestyle while also addressing growing housing needs, have become increasingly popular among home seekers. Since the COVID-19 outbreak, individuals primarily spend their time indoors, and with more people adopting work-from-home lifestyles, ensuring a high-quality, sterile, and comfortable indoor environment becomes crucial for indoor occupants. Many studies have highlighted that the activities of occupants significantly influence indoor environmental quality (IEQ) and energy consumption in buildings and applying disinfectants will generate increasing amount of volatile organic compounds (VOCs) which occupants could inhale, causing adverse health effects. Within this thesis, two studies are introduced and discussed. The first study, namely “zEDGE Living Experiments,” conducts a comprehensive evaluation of IEQ satisfaction and energy usage in the Purdue zEDGE Tiny House through real-time measurement and survey analysis. Twenty full-scale experiments were conducted during the winter season. The study first evaluates participants’ perception of IEQ factors, with thermal comfort and indoor air quality (IAQ) emerging as top priorities. It then examined energy adaptive behavior to understand maintenance of comfortable indoor conditions, noting primary adaptive strategies including heating, ventilation, and artificial lighting. The study then measured IEQ and energy consumption, evaluating occupants’ IEQ satisfaction levels. The average energy use was recorded at 10.3 kWh, with occupants generally satisfied with IEQ in the zEDGE Tiny House. Analysis indicated that heating and cooking were significant energy consumers, potentially exposing occupants to high indoor air pollutant levels in such compact living spaces. The second campaign, namely “Performance Evaluation of PID and PTR-TOF-MS,” compares the VOC detection abilities of photoionization detectors (PID) and a state-of-the-art proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). 54 controlled emission experiments were carried out among 18 different disinfectant products with main ingredients based on alcohol, lactic acid, peracetic acid/acetic acid, and botanical products. The results from time-series and correlation analyses indicate that the PID and PTR-TOF-MS were able to detect VOC signals from emission experiments. While the performances of the PID and PTR-TOF-MS were similar under experiments with alcohol-based products, the PID performed less well with products based on lactic acid and botanical products, and unsatisfactory for peracetic acid/acetic acid-based products.</p>
|
7 |
Improving accuracy of in situ gamma-ray spectrometryBoson, Jonas January 2008 (has links)
Gamma-ray spectrometry measurements performed on site, or “in situ”, is a widely used and powerful method that can be employed both to identify and quantify ground deposited radionuclides. The purpose of this thesis is to improve the calibration of high purity germanium (HPGe) detectors for in situ measurements, and calculate the combined uncertainty and potential systematic effects. An improved semi-empirical calibration method is presented, based on a novel expression for the intrinsic detector efficiency that includes both the energy and angular response of the detector. A three-layer model for the description of the depth distribution of the radionuclide and the soil density is proposed. The combined uncertainty of intrinsic detector efficiency calibrations and in situ measurements according to the proposed method was estimated. The uncertainty in the intrinsic detector efficiency was found to be 5.1 and 8.1% (coverage factor k=1, i.e. for a confidence interval of about 68%), for the two detectors calibrated. These numbers were, however, at a later stage reduced to 3.7 and 4.2%, using a revised expression for the intrinsic detector efficiency. For in situ measurements, the combined standard uncertainty was found to be 15-20% (k=1), based on the original expression for the intrinsic detector efficiency. Monte Carlo models of the two detectors were created and Monte Carlo calculated values for intrinsic detector efficiency were compared with experimental data. As a discrepancy was found, a thorough investigation of the detector response was performed. Scanning of the detector surface with a collimated 59.5 keV photon beam revealed the detector response to be highly irregular over the detector surface. It was concluded that the efficiency deficit of the detector could most likely be attributed to an increase in dead layer thickness compared with manufacturer supplied data. The thickness of the dead layer was estimated to be 1.5-1.9 mm, whereas the nominal value was 0.7 mm. Radiographs of the detectors were produced that provided valuable information about the physical dimensions of the germanium crystal, as well as its actual location within the detector housing. The Monte Carlo models were employed to calculate in situ measurement efficiencies for measurements of 137Cs deposition from the Chernobyl fallout. Results from the Monte Carlo simulations were compared both with the semi-empirical method and with soil sample data, and satisfactory agreement was confirmed. It was then proceeded to employ the Monte Carlo model to calculate the effect on in situ measurement results by two influencing parameters: ground curvature and activity in trees. Neither of these parameters was found to influence the result by more than about 25%. This deviation is comparable with the measurement uncertainty, and should not deter from measurements in such terrain.
|
8 |
Kalibrace a interpretace obrazových dat měřených zařízením LEEM / Calibration and interpretation of images measured by LEEMEndstrasser, Zdeněk January 2021 (has links)
This thesis deals with the software development to calibration and interpretation of image data measured by a LEEM device. As the imaging technique is uniquely suited for in-situ studies of surface dynamical processes, the attention is mainly paid to methods enabling the evaluation of measurement time series. The phase correlation method based on Fourier transform of images is proposed to temperature shift correction between consecutive frames. The thesis describes the methods of additive and impulse noise filtering, image visualization, the filtration of secondary electrons and the determination of I-V curves from measured image data. Implemented methods are described not only in terms of their mathematical origin, but also with emphasis on the revealing of critical aspects associated with their use. The thesis also focuses on the application of the created algorithm to image data capturing the spatial and temporal evolution of 4,4’-biphenyl-dicarboxylic acid surface phases induced by sample annealing. Based on these evaluations, a suitable procedure is then determined to perform accurate detection and compensation of temperature shift said.
|
9 |
Mesure In-situ par moyens optiques / Multi-sensor In-situ measurementDubreuil, Lorène 26 April 2017 (has links)
Mes travaux de thèse consistent à proposer et valider une démarche de métrologie 3D in-situ multi-capteurs/multi-échelles. L'intégration de systèmes de mesure au sein du moyen de production permet d'être très réactif aux présences de défauts géométriques et ainsi directement proposer des actions correctives. Afin de limiter les arrêts de fabrication, donc la diminution de l'efficience de la machine-outil, l’interopérabilité entre la fabrication et la mesure doit être maximisée : il est important de proposer une phase de mesure rapide et assurant une qualité minimum des données acquises. Un outil de mesure par caméras (Stéréo-corrélation d'images) est proposé dans ces travaux. Basé sur la connaissance du modèle FAO de la pièce et de l’environnement de travail, cet outil de mesure permet d'obtenir une cartographie des écarts géométriques de la pièce directement dans le repère FAO. Ainsi, il est possible d'analyser directement les données de mesure dans le même repère que celui de la fabrication : les temps de traitements des données sont réduits. / Integrating inspection procedures in the machining process contributes to process optimization. The use of in-situ measurement allows a betterreactivity for corrective actions. However, to be highly efficient, Machining and Inspection Process Planning must reach a high level of integration. It is hereessential to focus on the compromise measurement time vs precision: the time dedicated to inspection must be limited, but not to the detriment ofmeasurement quality. A measurement process for in-situ machining defect detection is proposed based on a stereo-DIC.
|
10 |
Comportement hydromécanique de matériaux constitutifs de plateformes ferroviaires anciennes / Hydromechanical behavior of constituent materials of track bed of existing railway linesTrinh, Viet Nam 20 January 2011 (has links)
Le présent travail étudie le comportement couplé hydromécanique de la couche intermédiaire des plates-formes ferroviaires anciennes. L'objectif principal est de vérifier le fonctionnement des plates-formes sans drainage et d'optimiser les travaux de modernisation de voies anciennes en déblai. Premièrement, les essais d'identification ont été réalisés sur les matériaux prélevés sur le site de Sénissiat. Les résultats ont montré que le sol de la couche intermédiaire de ce site présente une granulométrie bien étalée de 0 à 63 mm et une densité très élevée (d = 2,39 Mg/m3). Deuxièmement, une nouvelle colonne d'infiltration et un moule de compression de 300 mm de diamètre ont été développés permettant d'étudier le comportement hydraulique de la couche intermédiaire. Une faible perméabilité (ks 2,2.10-7 m/s) de cette couche a été estimée à partir des résultats expérimentaux. Troisièmement, une étude expérimentale sur le comportement mécanique de la couche intermédiaire a été réalisée. Cette étude a mis en évidence l'influence marquée de la teneur en eau sur le comportement mécanique de la couche intermédiaire. Un modèle de fatigue avec prise en compte de l'influence du nombre de cycles, du niveau de contrainte appliqué et de l'état hydrique a été élaboré en se basant sur les résultats expérimentaux. Finalement, les mesures de succion, de température et de paramètres météorologiques ont été réalisées sur les plates-formes en déblai sans drainage du site de Moulin Blanc pour compléter l'étude du comportement des plates-formes sans drainage. Une analyse globale des résultats obtenus au laboratoire avec les mesures in-situ a montré que la décision de ne pas mettre en place un dispositif de drainage devra être assortie de justificatifs permettant de s'assurer de la limitation de la teneur en eau de la couche intermédiaire, en se basant sur une étude approfondie sur le cycle d'eau pour chaque site concerné / The present work deals with the coupled hydro-mechanical behaviour of the blanket layer of the old railway trackbed. The main aim is to check the operation of the trackbed without drainage and to optimize the works of modernization of old railway in cutting. Firstly, identification tests were carried out on materials taken from the site of Sénissiat. The results showed that the blanket layer soil of this site is well graded from 0 to 63 mm and has a very high density (d = 2.39 Mg/m3). Secondly, an infiltration column of 300 mm in diameter were developed to study the hydraulic behaviour of the blanket layer. A low hydraulic conductivity (ks 2.2x10-7 m/s) of this layer was estimated according to the experimental results. Thirdly, an experimental study on the mechanical behaviour of the blanket layer was performed. This study shows a significant effect of the water content on the mechanical behaviour of the blanket layer. A permanent deformation model accounting for the influence of loading cycles, loading level and hydric state was elaborated based on the experimental results. Finally, the measurements of suction, temperature and weather parameters were carried out in a cutting without drainage at the site of Moulin Blanc to complete the study of the behaviour of the trackbed without drainage. A global analysis of the laboratory results with in-situ measurements shows that the decision regarding the setup of the drainage system required to establish justifications showing limited effects of the water content, based on a in-depth study on the water cycle for each site concerned
|
Page generated in 0.0914 seconds