• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 6
  • 4
  • 3
  • Tagged with
  • 56
  • 56
  • 17
  • 17
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas / Non-stationary data streams classification with incremental algorithms based on Gaussian mixture models

Oliveira, Luan Soares 18 August 2015 (has links)
Aprender conceitos provenientes de fluxos de dados é uma tarefa significamente diferente do aprendizado tradicional em lote. No aprendizado em lote, existe uma premissa implicita que os conceitos a serem aprendidos são estáticos e não evoluem significamente com o tempo. Por outro lado, em fluxos de dados os conceitos a serem aprendidos podem evoluir ao longo do tempo. Esta evolução é chamada de mudança de conceito, e torna a criação de um conjunto fixo de treinamento inaplicável neste cenário. O aprendizado incremental é uma abordagem promissora para trabalhar com fluxos de dados. Contudo, na presença de mudanças de conceito, conceitos desatualizados podem causar erros na classificação de eventos. Apesar de alguns métodos incrementais baseados no modelo de misturas gaussianas terem sido propostos na literatura, nota-se que tais algoritmos não possuem uma política explicita de descarte de conceitos obsoletos. Nesse trabalho um novo algoritmo incremental para fluxos de dados com mudanças de conceito baseado no modelo de misturas gaussianas é proposto. O método proposto é comparado com vários algoritmos amplamente utilizados na literatura, e os resultados mostram que o algoritmo proposto é competitivo com os demais em vários cenários, superando-os em alguns casos. / Learning concepts from data streams differs significantly from traditional batch learning. In batch learning there is an implicit assumption that the concept to be learned is static and does not evolve significantly over time. On the other hand, in data stream learning the concepts to be learned may evolve over time. This evolution is called concept drift, and makes the creation of a fixed training set be no longer applicable. Incremental learning paradigm is a promising approach for learning in a data stream setting. However, in the presence of concept drifts, out dated concepts can cause misclassifications. Several incremental Gaussian mixture models methods have been proposed in the literature, but these algorithms lack an explicit policy to discard outdated concepts. In this work, a new incremental algorithm for data stream with concept drifts based on Gaussian Mixture Models is proposed. The proposed methodis compared to various algorithms widely used in the literature, and the results show that it is competitive with them invarious scenarios, overcoming them in some cases.
32

On discriminative semi-supervised incremental learning with a multi-view perspective for image concept modeling

Byun, Byungki 17 January 2012 (has links)
This dissertation presents the development of a semi-supervised incremental learning framework with a multi-view perspective for image concept modeling. For reliable image concept characterization, having a large number of labeled images is crucial. However, the size of the training set is often limited due to the cost required for generating concept labels associated with objects in a large quantity of images. To address this issue, in this research, we propose to incrementally incorporate unlabeled samples into a learning process to enhance concept models originally learned with a small number of labeled samples. To tackle the sub-optimality problem of conventional techniques, the proposed incremental learning framework selects unlabeled samples based on an expected error reduction function that measures contributions of the unlabeled samples based on their ability to increase the modeling accuracy. To improve the convergence property of the proposed incremental learning framework, we further propose a multi-view learning approach that makes use of multiple features such as color, texture, etc., of images when including unlabeled samples. For robustness to mismatches between training and testing conditions, a discriminative learning algorithm, namely a kernelized maximal- figure-of-merit (kMFoM) learning approach is also developed. Combining individual techniques, we conduct a set of experiments on various image concept modeling problems, such as handwritten digit recognition, object recognition, and image spam detection to highlight the effectiveness of the proposed framework.
33

Probabilistic incremental learning for image recognition : modelling the density of high-dimensional data

Carvalho, Edigleison Francelino January 2014 (has links)
Atualmente diversos sistemas sensoriais fornecem dados em fluxos e essas observações medidas são frequentemente de alta dimensionalidade, ou seja, o número de variáveis medidas é grande, e as observações chegam em sequência. Este é, em particular, o caso de sistemas de visão em robôs. Aprendizagem supervisionada e não-supervisionada com esses fluxos de dados é um desafio, porque o algoritmo deve ser capaz de aprender com cada observação e depois descartá-la antes de considerar a próxima, mas diversos métodos requerem todo o conjunto de dados a fim de estimar seus parâmetros e, portanto, não são adequados para aprendizagem em tempo real. Além disso, muitas abordagens sofrem com a denominada maldição da dimensionalidade (BELLMAN, 1961) e não conseguem lidar com dados de entrada de alta dimensionalidade. Para superar os problemas descritos anteriormente, este trabalho propõe um novo modelo de rede neural probabilístico e incremental, denominado Local Projection Incremental Gaussian Mixture Network (LP-IGMN), que é capaz de realizar aprendizagem perpétua com dados de alta dimensionalidade, ou seja, ele pode aprender continuamente considerando a estabilidade dos parâmetros do modelo atual e automaticamente ajustar sua topologia levando em conta a fronteira do subespaço encontrado por cada neurônio oculto. O método proposto pode encontrar o subespaço intrísico onde os dados se localizam, o qual é denominado de subespaço principal. Ortogonal ao subespaço principal, existem as dimensões que são ruidosas ou que carregam pouca informação, ou seja, com pouca variância, e elas são descritas por um único parâmetro estimado. Portanto, LP-IGMN é robusta a diferentes fontes de dados e pode lidar com grande número de variáveis ruidosas e/ou irrelevantes nos dados medidos. Para avaliar a LP-IGMN nós realizamos diversos experimentos usando conjunto de dados simulados e reais. Demonstramos ainda diversas aplicações do nosso método em tarefas de reconhecimento de imagens. Os resultados mostraram que o desempenho da LP-IGMN é competitivo, e geralmente superior, com outras abordagens do estado da arte, e que ela pode ser utilizada com sucesso em aplicações que requerem aprendizagem perpétua em espaços de alta dimensionalidade. / Nowadays several sensory systems provide data in ows and these measured observations are frequently high-dimensional, i.e., the number of measured variables is large, and the observations are arriving in a sequence. This is in particular the case of robot vision systems. Unsupervised and supervised learning with such data streams is challenging, because the algorithm should be capable of learning from each observation and then discard it before considering the next one, but several methods require the whole dataset in order to estimate their parameters and, therefore, are not suitable for online learning. Furthermore, many approaches su er with the so called curse of dimensionality (BELLMAN, 1961) and can not handle high-dimensional input data. To overcome the problems described above, this work proposes a new probabilistic and incremental neural network model, called Local Projection Incremental Gaussian Mixture Network (LP-IGMN), which is capable to perform life-long learning with high-dimensional data, i.e., it can continuously learn considering the stability of the current model's parameters and automatically adjust its topology taking into account the subspace's boundary found by each hidden neuron. The proposed method can nd the intrinsic subspace where the data lie, which is called the principal subspace. Orthogonal to the principal subspace, there are the dimensions that are noisy or carry little information, i.e., with small variance, and they are described by a single estimated parameter. Therefore, LP-IGMN is robust to di erent sources of data and can deal with large number of noise and/or irrelevant variables in the measured data. To evaluate LP-IGMN we conducted several experiments using simulated and real datasets. We also demonstrated several applications of our method in image recognition tasks. The results have shown that the LP-IGMN performance is competitive, and usually superior, with other stateof- the-art approaches, and it can be successfully used in applications that require life-long learning in high-dimensional spaces.
34

Probabilistic incremental learning for image recognition : modelling the density of high-dimensional data

Carvalho, Edigleison Francelino January 2014 (has links)
Atualmente diversos sistemas sensoriais fornecem dados em fluxos e essas observações medidas são frequentemente de alta dimensionalidade, ou seja, o número de variáveis medidas é grande, e as observações chegam em sequência. Este é, em particular, o caso de sistemas de visão em robôs. Aprendizagem supervisionada e não-supervisionada com esses fluxos de dados é um desafio, porque o algoritmo deve ser capaz de aprender com cada observação e depois descartá-la antes de considerar a próxima, mas diversos métodos requerem todo o conjunto de dados a fim de estimar seus parâmetros e, portanto, não são adequados para aprendizagem em tempo real. Além disso, muitas abordagens sofrem com a denominada maldição da dimensionalidade (BELLMAN, 1961) e não conseguem lidar com dados de entrada de alta dimensionalidade. Para superar os problemas descritos anteriormente, este trabalho propõe um novo modelo de rede neural probabilístico e incremental, denominado Local Projection Incremental Gaussian Mixture Network (LP-IGMN), que é capaz de realizar aprendizagem perpétua com dados de alta dimensionalidade, ou seja, ele pode aprender continuamente considerando a estabilidade dos parâmetros do modelo atual e automaticamente ajustar sua topologia levando em conta a fronteira do subespaço encontrado por cada neurônio oculto. O método proposto pode encontrar o subespaço intrísico onde os dados se localizam, o qual é denominado de subespaço principal. Ortogonal ao subespaço principal, existem as dimensões que são ruidosas ou que carregam pouca informação, ou seja, com pouca variância, e elas são descritas por um único parâmetro estimado. Portanto, LP-IGMN é robusta a diferentes fontes de dados e pode lidar com grande número de variáveis ruidosas e/ou irrelevantes nos dados medidos. Para avaliar a LP-IGMN nós realizamos diversos experimentos usando conjunto de dados simulados e reais. Demonstramos ainda diversas aplicações do nosso método em tarefas de reconhecimento de imagens. Os resultados mostraram que o desempenho da LP-IGMN é competitivo, e geralmente superior, com outras abordagens do estado da arte, e que ela pode ser utilizada com sucesso em aplicações que requerem aprendizagem perpétua em espaços de alta dimensionalidade. / Nowadays several sensory systems provide data in ows and these measured observations are frequently high-dimensional, i.e., the number of measured variables is large, and the observations are arriving in a sequence. This is in particular the case of robot vision systems. Unsupervised and supervised learning with such data streams is challenging, because the algorithm should be capable of learning from each observation and then discard it before considering the next one, but several methods require the whole dataset in order to estimate their parameters and, therefore, are not suitable for online learning. Furthermore, many approaches su er with the so called curse of dimensionality (BELLMAN, 1961) and can not handle high-dimensional input data. To overcome the problems described above, this work proposes a new probabilistic and incremental neural network model, called Local Projection Incremental Gaussian Mixture Network (LP-IGMN), which is capable to perform life-long learning with high-dimensional data, i.e., it can continuously learn considering the stability of the current model's parameters and automatically adjust its topology taking into account the subspace's boundary found by each hidden neuron. The proposed method can nd the intrinsic subspace where the data lie, which is called the principal subspace. Orthogonal to the principal subspace, there are the dimensions that are noisy or carry little information, i.e., with small variance, and they are described by a single estimated parameter. Therefore, LP-IGMN is robust to di erent sources of data and can deal with large number of noise and/or irrelevant variables in the measured data. To evaluate LP-IGMN we conducted several experiments using simulated and real datasets. We also demonstrated several applications of our method in image recognition tasks. The results have shown that the LP-IGMN performance is competitive, and usually superior, with other stateof- the-art approaches, and it can be successfully used in applications that require life-long learning in high-dimensional spaces.
35

Probabilistic incremental learning for image recognition : modelling the density of high-dimensional data

Carvalho, Edigleison Francelino January 2014 (has links)
Atualmente diversos sistemas sensoriais fornecem dados em fluxos e essas observações medidas são frequentemente de alta dimensionalidade, ou seja, o número de variáveis medidas é grande, e as observações chegam em sequência. Este é, em particular, o caso de sistemas de visão em robôs. Aprendizagem supervisionada e não-supervisionada com esses fluxos de dados é um desafio, porque o algoritmo deve ser capaz de aprender com cada observação e depois descartá-la antes de considerar a próxima, mas diversos métodos requerem todo o conjunto de dados a fim de estimar seus parâmetros e, portanto, não são adequados para aprendizagem em tempo real. Além disso, muitas abordagens sofrem com a denominada maldição da dimensionalidade (BELLMAN, 1961) e não conseguem lidar com dados de entrada de alta dimensionalidade. Para superar os problemas descritos anteriormente, este trabalho propõe um novo modelo de rede neural probabilístico e incremental, denominado Local Projection Incremental Gaussian Mixture Network (LP-IGMN), que é capaz de realizar aprendizagem perpétua com dados de alta dimensionalidade, ou seja, ele pode aprender continuamente considerando a estabilidade dos parâmetros do modelo atual e automaticamente ajustar sua topologia levando em conta a fronteira do subespaço encontrado por cada neurônio oculto. O método proposto pode encontrar o subespaço intrísico onde os dados se localizam, o qual é denominado de subespaço principal. Ortogonal ao subespaço principal, existem as dimensões que são ruidosas ou que carregam pouca informação, ou seja, com pouca variância, e elas são descritas por um único parâmetro estimado. Portanto, LP-IGMN é robusta a diferentes fontes de dados e pode lidar com grande número de variáveis ruidosas e/ou irrelevantes nos dados medidos. Para avaliar a LP-IGMN nós realizamos diversos experimentos usando conjunto de dados simulados e reais. Demonstramos ainda diversas aplicações do nosso método em tarefas de reconhecimento de imagens. Os resultados mostraram que o desempenho da LP-IGMN é competitivo, e geralmente superior, com outras abordagens do estado da arte, e que ela pode ser utilizada com sucesso em aplicações que requerem aprendizagem perpétua em espaços de alta dimensionalidade. / Nowadays several sensory systems provide data in ows and these measured observations are frequently high-dimensional, i.e., the number of measured variables is large, and the observations are arriving in a sequence. This is in particular the case of robot vision systems. Unsupervised and supervised learning with such data streams is challenging, because the algorithm should be capable of learning from each observation and then discard it before considering the next one, but several methods require the whole dataset in order to estimate their parameters and, therefore, are not suitable for online learning. Furthermore, many approaches su er with the so called curse of dimensionality (BELLMAN, 1961) and can not handle high-dimensional input data. To overcome the problems described above, this work proposes a new probabilistic and incremental neural network model, called Local Projection Incremental Gaussian Mixture Network (LP-IGMN), which is capable to perform life-long learning with high-dimensional data, i.e., it can continuously learn considering the stability of the current model's parameters and automatically adjust its topology taking into account the subspace's boundary found by each hidden neuron. The proposed method can nd the intrinsic subspace where the data lie, which is called the principal subspace. Orthogonal to the principal subspace, there are the dimensions that are noisy or carry little information, i.e., with small variance, and they are described by a single estimated parameter. Therefore, LP-IGMN is robust to di erent sources of data and can deal with large number of noise and/or irrelevant variables in the measured data. To evaluate LP-IGMN we conducted several experiments using simulated and real datasets. We also demonstrated several applications of our method in image recognition tasks. The results have shown that the LP-IGMN performance is competitive, and usually superior, with other stateof- the-art approaches, and it can be successfully used in applications that require life-long learning in high-dimensional spaces.
36

Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas / Non-stationary data streams classification with incremental algorithms based on Gaussian mixture models

Luan Soares Oliveira 18 August 2015 (has links)
Aprender conceitos provenientes de fluxos de dados é uma tarefa significamente diferente do aprendizado tradicional em lote. No aprendizado em lote, existe uma premissa implicita que os conceitos a serem aprendidos são estáticos e não evoluem significamente com o tempo. Por outro lado, em fluxos de dados os conceitos a serem aprendidos podem evoluir ao longo do tempo. Esta evolução é chamada de mudança de conceito, e torna a criação de um conjunto fixo de treinamento inaplicável neste cenário. O aprendizado incremental é uma abordagem promissora para trabalhar com fluxos de dados. Contudo, na presença de mudanças de conceito, conceitos desatualizados podem causar erros na classificação de eventos. Apesar de alguns métodos incrementais baseados no modelo de misturas gaussianas terem sido propostos na literatura, nota-se que tais algoritmos não possuem uma política explicita de descarte de conceitos obsoletos. Nesse trabalho um novo algoritmo incremental para fluxos de dados com mudanças de conceito baseado no modelo de misturas gaussianas é proposto. O método proposto é comparado com vários algoritmos amplamente utilizados na literatura, e os resultados mostram que o algoritmo proposto é competitivo com os demais em vários cenários, superando-os em alguns casos. / Learning concepts from data streams differs significantly from traditional batch learning. In batch learning there is an implicit assumption that the concept to be learned is static and does not evolve significantly over time. On the other hand, in data stream learning the concepts to be learned may evolve over time. This evolution is called concept drift, and makes the creation of a fixed training set be no longer applicable. Incremental learning paradigm is a promising approach for learning in a data stream setting. However, in the presence of concept drifts, out dated concepts can cause misclassifications. Several incremental Gaussian mixture models methods have been proposed in the literature, but these algorithms lack an explicit policy to discard outdated concepts. In this work, a new incremental algorithm for data stream with concept drifts based on Gaussian Mixture Models is proposed. The proposed methodis compared to various algorithms widely used in the literature, and the results show that it is competitive with them invarious scenarios, overcoming them in some cases.
37

Optimizing Bike Sharing Systems: Dynamic Prediction Using Machine Learning and Statistical Techniques and Rebalancing

Almannaa, Mohammed Hamad 07 May 2019 (has links)
The large increase in on-road vehicles over the years has resulted in cities facing challenges in providing high-quality transportation services. Traffic jams are a clear sign that cities are overwhelmed, and that current transportation networks and systems cannot accommodate the current demand without a change in policy, infrastructure, transportation modes, and commuter mode choice. In response to this problem, cities in a number of countries have started putting a threshold on the number of vehicles on the road by deploying a partial or complete ban on cars in the city center. For example, in Oslo, leaders have decided to completely ban privately-owned cars from its center by the end of 2019, making it the first European city to totally ban cars in the city center. Instead, public transit and cycling will be supported and encouraged in the banned-car zone, and hundreds of parking spaces in the city will be replaced by bike lanes. As a government effort to support bicycling and offer alternative transportation modes, bike-sharing systems (BSSs) have been introduced in over 50 countries. BSSs aim to encourage people to travel via bike by distributing bicycles at stations located across an area of service. Residents and visitors can borrow a bike from any station and then return it to any station near their destination. Bicycles are considered an affordable, easy-to-use, and, healthy transportation mode, and BSSs show significant transportation, environmental, and health benefits. As the use of BSSs have grown, imbalances in the system have become an issue and an obstacle for further growth. Imbalance occurs when bikers cannot drop off or pick-up a bike because the bike station is either full or empty. This problem has been investigated extensively by many researchers and policy makers, and several solutions have been proposed. There are three major ways to address the rebalancing issue: static, dynamic and incentivized. The incentivized approaches make use of the users in the balancing efforts, in which the operating company incentives them to change their destination in favor of keeping the system balanced. The other two approaches: static and dynamic, deal with the movement of bikes between stations either during or at the end of the day to overcome station imbalances. They both assume the location and number of bike stations are fixed and only the bikes can be moved. This is a realistic assumption given that current BSSs have only fixed stations. However, cities are dynamic and their geographical and economic growth affects the distribution of trips and thus constantly changing BSS user behavior. In addition, work-related bike trips cause certain stations to face a high-demand level during weekdays, while these same stations are at a low-demand level on weekends, and thus may be of little use. Moreover, fixed stations fail to accommodate big events such as football games, holidays, or sudden weather changes. This dissertation proposes a new generation of BSSs in which we assume some of the bike stations can be portable. This approach takes advantage of both types of BSSs: dock-based and dock-less. Towards this goal, a BSS optimization framework was developed at both the tactical and operational level. Specifically, the framework consists of two levels: predicting bike counts at stations using fast, online, and incremental learning approaches and then balancing the system using portable stations. The goal is to propose a framework to solve the dynamic bike sharing repositioning problem, aiming at minimizing the unmet demand, leading to increased user satisfaction and reducing repositioning/rebalancing operations. This dissertation contributes to the field in five ways. First, a multi-objective supervised clustering algorithm was developed to identify the similarity of bike-usage with respect to time events. Second, a dynamic, easy-to-interpret, rapid approach to predict bike counts at stations in a BSS was developed. Third, a univariate inventory model using a Markov chain process that provides an optimal range of bike levels at stations was created. Fourth, an investigation of the advantages of portable bike stations, using an agent-based simulation approach as a proof-of-concept was developed. Fifth, mathematical and heuristic approaches were proposed to balance bike stations. / Doctor of Philosophy / Large urban areas are often associated with traffic congestion, high carbon mono/dioxide emissions (CO/CO2), fuel waste, and associated decreases in productivity. The estimated loss attributed to missed productivity and wasted fuel increased from $87.2 to $115 between 2007 and 2009. Driving in congested areas also results in long trip times. For instance, in 1993, drivers experienced trips that were 1.2 min/km longer in congested conditions. As a result, commuters are encouraged to leave their cars at home and use public transportation modes instead. However, public transportation modes fails to deliver commuters to their exact destination. Users have to walk some distance, which is commonly called the “last mile”. Bike sharing systems (BSSs) have started to fill this gap, offering a flexible and convenient transportation mode for commuters, around the clock. This is in addition to individual financial savings, health benefits, and reduction in congestion and emissions. Resent reports have shown BSSs multiplying over 50 countries. This notable expansion of BSSs also brings daily logistical challenges due to the imbalanced demand, causing some stations to run empty while others become full. Rebalancing the bike inventory in a BSS is crucial to ensure customer satisfaction and the whole system’s effectiveness. Most of the operating costs are also associated with rebalancing. The current rebalancing approaches assume stations are fixed and thus don’t take into account that the demand changes from weekday to weekend as well as from peak to non-peak hours, making some stations useless during specific days of the week and times of day. Furthermore, cities change continually with regard to demographics or structures and thus the distribution of trips also changes continually, leading to re-installation of stations to accommodate the dynamic change, which is both impractical and costly. In this dissertation, we propose a new generation of BSS in which we assume some stations are portable, meaning they can move during the day. They can be either stand-alone or an extension of existing stations with the goal of accommodating the dynamic changes in the distribution of trips during the day. To implement our new BSSs, we developed a BSS optimization framework. This framework consists of two components: predicting the bike counts at stations using fast approaches and then balancing the system using portable stations. The goal is to propose a framework to solve the dynamic bike sharing repositioning problem, aiming at minimizing the unmet demand, leading to increased user satisfaction and reducing repositioning/rebalancing operations. This dissertation contributes to the field in five ways. First, a novel algorithm was developed to identify the similarity of bike-usage with respect to time events. Second, easy-to-interpret and rapid approaches to predict bike counts at stations in a BSS were developed. Third, an inventory model using statistical techniques that provide an optimal range of bike levels at stations was created. Fourth, an investigation of the advantages of portable bike stations was developed. Fifth, mathematical approach was proposed to balance bike stations.
38

Implementation of decision trees for embedded systems

Badr, Bashar January 2014 (has links)
This research work develops real-time incremental learning decision tree solutions suitable for real-time embedded systems by virtue of having both a defined memory requirement and an upper bound on the computation time per training vector. In addition, the work provides embedded systems with the capabilities of rapid processing and training of streamed data problems, and adopts electronic hardware solutions to improve the performance of the developed algorithm. Two novel decision tree approaches, namely the Multi-Dimensional Frequency Table (MDFT) and the Hashed Frequency Table Decision Tree (HFTDT) represent the core of this research work. Both methods successfully incorporate a frequency table technique to produce a complete decision tree. The MDFT and HFTDT learning methods were designed with the ability to generate application specific code for both training and classification purposes according to the requirements of the targeted application. The MDFT allows the memory architecture to be specified statically before learning takes place within a deterministic execution time. The HFTDT method is a development of the MDFT where a reduction in the memory requirements is achieved within a deterministic execution time. The HFTDT achieved low memory usage when compared to existing decision tree methods and hardware acceleration improved the performance by up to 10 times in terms of the execution time.
39

Adaptatividade em aprendizagem de máquina: conceitos e estudo de caso. / Adaptivity in machine learning: Concepts and case study.

Stange, Renata Luiza 21 October 2011 (has links)
A aprendizagem incremental requer que o mecanismo de aprendizagem seja baseado no acúmulo dinâmico da informação extraída das experiências realizadas. A aprendizagem de máquina usando adaptatividade considera a integração de técnicas de aprendizagem de máquina simbólicas com técnicas adaptativas para a solução de problemas de aprendizagem. A palavra adaptatividade sugere a capacidade de modificação do conjunto de regras aprendidas em resposta a eventos que podem ocorrer durante o processo de aprendizagem, ou então autoajustes no conjunto de parâmetros. Os dispositivos adaptativos que possuem a capacidade de reter em suas regras informações extraídas de suas entradas podem acumular informações, para que sejam utilizadas quando forem necessárias. As estratégias de interesse para a incorporação da adaptatividade incluem a utilização de métodos e técnicas de aprendizagem de máquina, em particular as que implementam aprendizado supervisionado e tomada de decisão. O objetivo deste trabalho é explorar a utilização de técnicas adaptativas no processo de aprendizado por máquina, tanto de forma exclusiva como em conjunto com outras técnicas de aprendizagem. Para atingir este objetivo, propõe-se aqui a utilização de dispositivos adaptativos para representar o conhecimento adquirido através da aprendizagem incremental. Além disso, é feito um estudo de caso que combina aprendizagem de máquina com técnicas adaptativas para implementar um esquema de aprendizagem autônoma de estratégias, com o objetivo de vencer uma particular instância do jogo que é apresentado. A aprendizagem de um jogo exige a tomada de decisão, que é um processo complexo e dinâmico. Com a finalidade de fornecer um substrato geral para a criação, manipulação e análise de regras em problemas de tomada de decisão, utilizando tabelas de decisão adaptativas, a ferramenta de software Adapt-DT foi implementada. Um exemplo ilustrativo utilizando tabelas de decisão adaptativa como meio para a representação de conhecimento é apresentado, para exercitar a utilização da ferramenta. Isto permite concluir que os dispositivos adaptativos podem ser utilizados para representar o conhecimento adequadamente, com vantagens sobre outros métodos tradicionais. / Incremental learning requires a learning mechanism based on the information extracted from dynamically accumulated experiments. Adaptivity-oriented machine-learning combines adaptive techniques with symbolic ones for solving machine-learning problems. The term adaptivity means the ability of a learning process to change its own set of rules in response to events occurred during the learning process, or, equivalently, self-tuning the set of parameters. The adaptive devices with withhold information ability inside their rules, extracted from input from their own set of rules, can accumulate information to be used whenever they are necessary. The strategies of interest to adopt adaptivity include the use of machine learning techniques and methods, particularly the ones that implement supervised learning and decision-making. This work purposes to investigate the application of adaptive techniques in machine learning process, either exclusively and in cooperation with other techniques. In order to achieve this target, the use of adaptive devices to represent the knowledge gathered through incremental learning is proposed. Additionally, a case study that combines both machine learning and adaptive techniques to implement a scheme of autonomous learning strategies is also performed with the goal of winning an instance of the simple game. Decision-making is required to learning how to play a game, which is a complex and dynamic process. So as to provide a general framework for the creation, manipulation and analysis of rules in decision-making problems using adaptive decision tables, the Adapt-DT tool was implemented. An illustrative example using adaptive decision tables as a means to represent knowledge is introduced to the tool evaluation. This supports the conclusion that adaptive devices can be used to adequately represent the knowledge, with advantages over other traditional methods.
40

Adaptatividade em aprendizagem de máquina: conceitos e estudo de caso. / Adaptivity in machine learning: Concepts and case study.

Renata Luiza Stange 21 October 2011 (has links)
A aprendizagem incremental requer que o mecanismo de aprendizagem seja baseado no acúmulo dinâmico da informação extraída das experiências realizadas. A aprendizagem de máquina usando adaptatividade considera a integração de técnicas de aprendizagem de máquina simbólicas com técnicas adaptativas para a solução de problemas de aprendizagem. A palavra adaptatividade sugere a capacidade de modificação do conjunto de regras aprendidas em resposta a eventos que podem ocorrer durante o processo de aprendizagem, ou então autoajustes no conjunto de parâmetros. Os dispositivos adaptativos que possuem a capacidade de reter em suas regras informações extraídas de suas entradas podem acumular informações, para que sejam utilizadas quando forem necessárias. As estratégias de interesse para a incorporação da adaptatividade incluem a utilização de métodos e técnicas de aprendizagem de máquina, em particular as que implementam aprendizado supervisionado e tomada de decisão. O objetivo deste trabalho é explorar a utilização de técnicas adaptativas no processo de aprendizado por máquina, tanto de forma exclusiva como em conjunto com outras técnicas de aprendizagem. Para atingir este objetivo, propõe-se aqui a utilização de dispositivos adaptativos para representar o conhecimento adquirido através da aprendizagem incremental. Além disso, é feito um estudo de caso que combina aprendizagem de máquina com técnicas adaptativas para implementar um esquema de aprendizagem autônoma de estratégias, com o objetivo de vencer uma particular instância do jogo que é apresentado. A aprendizagem de um jogo exige a tomada de decisão, que é um processo complexo e dinâmico. Com a finalidade de fornecer um substrato geral para a criação, manipulação e análise de regras em problemas de tomada de decisão, utilizando tabelas de decisão adaptativas, a ferramenta de software Adapt-DT foi implementada. Um exemplo ilustrativo utilizando tabelas de decisão adaptativa como meio para a representação de conhecimento é apresentado, para exercitar a utilização da ferramenta. Isto permite concluir que os dispositivos adaptativos podem ser utilizados para representar o conhecimento adequadamente, com vantagens sobre outros métodos tradicionais. / Incremental learning requires a learning mechanism based on the information extracted from dynamically accumulated experiments. Adaptivity-oriented machine-learning combines adaptive techniques with symbolic ones for solving machine-learning problems. The term adaptivity means the ability of a learning process to change its own set of rules in response to events occurred during the learning process, or, equivalently, self-tuning the set of parameters. The adaptive devices with withhold information ability inside their rules, extracted from input from their own set of rules, can accumulate information to be used whenever they are necessary. The strategies of interest to adopt adaptivity include the use of machine learning techniques and methods, particularly the ones that implement supervised learning and decision-making. This work purposes to investigate the application of adaptive techniques in machine learning process, either exclusively and in cooperation with other techniques. In order to achieve this target, the use of adaptive devices to represent the knowledge gathered through incremental learning is proposed. Additionally, a case study that combines both machine learning and adaptive techniques to implement a scheme of autonomous learning strategies is also performed with the goal of winning an instance of the simple game. Decision-making is required to learning how to play a game, which is a complex and dynamic process. So as to provide a general framework for the creation, manipulation and analysis of rules in decision-making problems using adaptive decision tables, the Adapt-DT tool was implemented. An illustrative example using adaptive decision tables as a means to represent knowledge is introduced to the tool evaluation. This supports the conclusion that adaptive devices can be used to adequately represent the knowledge, with advantages over other traditional methods.

Page generated in 0.4741 seconds