• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INDEX MODULATION USING RECONFIGURABLE ARRAYS

Celis Sierra, Sebastian 04 1900 (has links)
Communication systems have remained almost unchanged since the invention of the superheterodyne receiver in 1918 by the US engineer Edwin Armstrong. With the introduction of multiple-input-multiple-output (MIMO) technologies, Index Modulation appears to be the promising technology to revolutionize the traditional radio-frequency (RF) chain. Index modulation is a high-spectrum, energy-efficient, simple digital communication technique that uses the states of the building blocks of a communication system. In this study, we have focused on the use of radiation patterns scattered by antenna arrays or a metasurface as indices that are encoded as data bits. Initially, we explore sets of 𝑁tx transmitting point source antennas located on the XY plane; we assume that every antenna has phase tunability capability. The phase, the position in space, and the size of the array determine the shape of the far-field radiation pattern. Following the antenna excitation, a set of 𝑁rx receiver antennas spread at specific locations of the spherical space measures the incoming power signal, allowing the sampling of the radiation pattern that is demodulated into information bits.This work is focused on the characterization of the measured radiation patterns under different system and channel variables and their direct effect on the Bit Error Rate.
2

Energy-Efficient AF Relay Assisted OFDM with Index Modulation

Zhou, Jiusi 04 1900 (has links)
To broaden the application scenario and reduce energy consumption, we propose an energy-efficient fixed-gain (FG) amplify-and-forward (AF) relay assisted orthog- onal frequency-division multiplexing with index modulation (OFDM-IM) scheme in this thesis. The proposed system needs neither instantaneous channel state informa- tion (CSI) nor performing complicated processing at the relay node. It operates based on a new design of power allocation that minimizes the sum of transmit power at both source and relay node, given an outage probability constraint. Considering the actual situation and combining with the characteristics of normalization research, the pro- posed scheme can be discussed in two scenarios regarding to whether the subcarriers are interfered with by fading and noise independently. Based on the consistency of statistical CSI for each subcarrier, through a series of problem transformation and simplification, this thesis converts the original power allocation problem to a relaxed version and solve the relaxed problem using the convex optimization techniques. To reveal the computing efficiency of the proposed power allocation scheme, we analyze its computational complexity. Numerical simulations substantiate that the proposed optimization scheme has a neglectable loss compared with the brute force search, while the computational complexity could be considerably reduced. As for the sce- nario about the independence of statistical CSI for each subcarrier, an approach of artificial neural network (ANN) based on deep learning is incorporated into the sys- tem, enabling the proposed scheme to achieve a high accuracy comparing perfect optimization scheme. In the processing of power minimization, this study utilizes the adaptive moment estimation (Adam) method to implement back-propagation learn- ing and achieve the power allocation needed.
3

Index Modulation Schemes for Terahertz Communications

Loukil, Mohamed Habib 04 1900 (has links)
Terahertz (THz)-band communication is envisioned as a critical technology that could satisfy the need for much higher data rates in sixth generation wireless communi- cation (6G) systems and beyond. Although THz signal propagation suffers from huge spreading and molecular absorption losses that limit the achievable commu- nication ranges, ultra-massive multiple-input multiple-output (UM-MIMO) antenna arrays can introduce the required beamforming gains to compensate for these losses. The reconfigurable UM-MIMO systems of small footprints motivate the use of spatial modulation techniques. Furthermore, the ultra-wideband fragmented THz spectrum motivates the use of index modulation techniques over multicarrier channels. In this thesis, we consider the problem of efficient index mapping and data detection in THz- band index modulation paradigms. We first propose an accurate frequency-domain statistical UM-MIMO channel model for wideband multicarrier THz-band commu- nications by considering THz-specific features. We then propose several THz-band generalized index modulation schemes that provide various performance and complex- ity tradeoffs. We propose efficient algorithms for mapping information bits to antenna and frequency indices at the transmitter side to enhance the achievable data rates in THz channel uses. We further propose complementary low-complexity parameter estimation and data detection techniques at the receiver side that can scale efficiently with very high rates. We derive theoretical bounds on the achievable performance gains of the proposed solutions and generate extensive numerical results promoting the corresponding future 6G use cases.
4

Enregistrement et analyses physico-chimiques de réseaux dans des matériaux composites polymères-points quantiques

Barichard, Anne 05 July 2011 (has links)
Ce travail de thèse a été consacré à la photostructuration d’une matrice polymère de type acrylate contenant des points quantiques CdSe/ZnS (QDs) par l’enregistrement de réseaux. La diffusion photoinduite des nanocristaux semi-conducteurs a tout d’abord été mise en évidence par l’utilisation d’un montage permettant d’irradier sur une seule ligne, et par l’émission de fluorescence des QDs utilisée ici comme sonde de déplacement. Ensuite, pour comprendre l’augmentation de la modulation d’indice de réfraction, et par conséquent du rendement de diffraction des réseaux enregistrés dans ces matériaux composites, nous avons mis en place une approche physico-chimique. Celle-ci nous a permis de corréler les modifications chimiques et les propriétés physiques du réseau. En effet, nous avons montré que l’ajout de points quantiques influence la cinétique de polymérisation ; la vitesse de consommation du photosensibilisateur et de conversion des monomères diminuent. Cette diminution permet une meilleure diffusion des espèces au sein de la matrice. Donc, le ralentissement de la cinétique de photopolymérisation et la répartition spatiale des QDs contribuent à un accroissement de la modulation d’indice de réfraction des réseaux enregistrés. / This work is devoted to the photostructuration of an acrylate polymer matrix with dispersed CdSe/ZnS quantum dots (QDs) upon grating exposure. The photo-induced diffusion of semiconductor nanocrystals is proved by the use of a "one line irradiation" set up and by the emission of the QDs fluorescence, used here as a probe of displacement. Then, in order to understand the increase of the refractive index modulation, and so, of the diffraction efficiency of the recorded patterns in the composite materials, we apply a physico-chemical approach. This one allows correlating the chemical modifications to the physical properties of the gratings. Indeed, we show that the addition of QDs influences the kinetics of polymerization ; the rate of the photo-initiator consumption, and that of the monomer conversion decrease. This decrease favors the diffusion ofthe species inside the matrix. Therefore, the slowing down of the kinetics of the photopolymerization and the spatial distribution of QDs contribute to the enhancement of the refractive index modulation of the recorded gratings.
5

Elaboration et durabilité de matériaux composites à base acrylate et de points quantiques de ZnO

Goourey, Georgia 15 July 2013 (has links)
Ce travail de thèse a été dans un premier temps consacré à l’influence des points quantiques (QDs) de ZnO de taille 5 nm, synthétisés par voie sol-gel sur les propriétés physiques et physico-chimiques des réseaux enregistrés par holographie dans des photopolymères de type acrylate. L’amorceur, ici la camphorquinone, étant un élément clé de la photopolymérisation, une double approche expérimentale/théorique a permis de comprendre ses modifications photochimiques en fonction de la composition du système photosensible. L’introduction de 1 % en masse des QDs améliore les propriétés physiques des matériaux photostructurés (augmentation du rendement de diffraction due à la répartition spatiale des QDs) sans modifier la cinétique de polymérisation. Dans un deuxième temps, l’influence des QDs sur la durabilité des matériaux sous irradiation à λ 300 nm a été examinée. L’exposition des polymères purs et dopés entraîne des modifications chimiques de la matrice polymère et le dégagement de gaz. Cependant, la présence de QDs de ZnO (1 % en masse) a un effet photocatalytique sur la durabilité du matériau. Cet effet implique la contribution de l’électron et du trou photogénérés au mécanisme de dégradation, conduisant à une extinction partielle de la fluorescence des QDs. Il est d’autant plus important que le taux de QDs augmente dans le milieu et souligne le rôle de l’interface polymère/nanoparticule. En revanche, l’introduction de 1 % de nanocristaux semi-conducteurs de ZnO (taille 10-30 nm) entraîne une stabilisation de la matrice qui traduit un effet photoprotecteur inattendu de ces nanoparticules. / This work was first devoted to the influence of ZnO quantum dots (QDs) with 5 nm diameter, synthesized by sol-gel method on the physical and physico-chemical properties of the gratings recorded in acrylate photopolymers by holography. Since the photosensitizer (in our study camphorquinone) is a key element in the photopolymerization process, a double experimental/theoretical approach was applied to understand its photochemical modifications as a function of the content of the photosensitive system. The introduction of 1 wt % of Qds improves the physical properties of the photo-patterned materials (increase of the diffraction efficiency due to the spatial distribution of QDs) without modifying the kinetics of polymerization. Secondly, the influence of QDs on the durability of materials under irradiation at λ 300 nm was investigated. The exposure of pure and doped polymers leads to the chemical modifications of the polymer matrix and the release of gas. However, ZnO QDs (1 wt % loading) negatively influenced the durability by their photocatalytic effect. This effect points out the contribution of the photo-generated charge carriers to the mechanism of degradation, leading to a partial quenching of the fluorescence of QDs. It also increases with increasing QDs content and underlines the role of the polymer/nanoparticule interface. On the contrary, the presence of 1 wt % of semi-conductor nanocrystals of ZnO (size 10-30 nm) induces a stabilization of the matrix. This reveals an unexpected photo-protective effect of these nanoparticules.
6

Quantization Index Modulation Based Watermarking Using Digital Holography

Okman, Osman Erman 01 September 2006 (has links) (PDF)
The multimedia watermarking techniques are evolved very quickly in the last years with the increase in the use of internet. The evolution of the internet makes the copyright issues very important and many different approaches are appeared to protect the digital content. On the other hand, holography is the method to store the 3-D information of an object but it is very applicable to use as a watermark because of the nature of the holographic data. The 3-D object can be reconstructed from the hologram even if the hologram is cropped or occluded. However, watermarking of an image with a hologram is a very novel approach and there are only a few works in the literature which are not very robust against the attacks like filtering or compression. In this thesis, we propose to embed the phase of the hologram to an image using quantization index modulation (QIM). QIM is utilized to make the watermarking scheme blind and degrade the host image as low as possible. The robustness of the proposed technique is also tested against several attacks such as filtering, compression, etc. The evaluated performance of this system is compared with the existing methods in the literature which uses either holograms or logos as the secret mark. Furthermore, the characteristics of the holograms are investigated and the findings about the hologram compression are reported in this work.
7

Quantization Based Data Hiding Strategies With Visual Applications

Esen, Ersin 01 February 2010 (has links) (PDF)
The first explored area in this thesis is the proposed data hiding method, TCQ-IS. The method is based on Trellis Coded Quantization (TCQ), whose initial state selection is arbitrary. TCQ-IS exploits this fact to hide data. It is a practical multi-dimensional that eliminates the prohibitive task of designing high dimensional quantizers. The strength and weaknesses of the method are stated by various experiments. The second contribution is the proposed data hiding method, Forbidden Zone Data Hiding (FZDH), which relies on the concept of &ldquo / forbidden zone&rdquo / , where host signal is not altered. The main motive of FZDH is to introduce distortion as much as needed, while keeping a range of host signal intact depending on the desired level of robustness. FZDH is compared against Quantization Index Modulation (QIM) as well as DC-QIM and ST-QIM. FZDH outperforms QIM even in 1-D and DC-QIM in higher dimensions. Furthermore, FZDH is comparable with ST-QIM for certain operation regimes. The final contribution is the video data hiding framework that includes FZDH, selective embedding and Repeat Accumulate (RA) codes. De-synchronization due to selective embedding is handled with RA codes. By means of simple rules applied to the embedded frame markers, certain level of robustness against temporal attacks is introduced. Selected coefficients are used to embed message bits by employing multi-dimensional FZDH. The framework is tested with typical broadcast material against common video processing attacks. The results indicate that the framework can be utilized in real life applications.
8

Novel feedback and signalling mechanisms for interference management and efficient modulation

Abu-alhiga, Rami January 2010 (has links)
In order to meet the ever-growing demand for mobile data, a number of different technologies have been adopted by the fourth generation standardization bodies. These include multiple access schemes such as spatial division multiple access (SDMA), and efficient modulation techniques such as orthogonal frequency division multiplexing (OFDM)-based modulation. The specific objectives of this theses are to develop an effective feedback method for interference management in smart antenna SDMA systems and to design an efficient OFDM-based modulation technique, where an additional dimension is added to the conventional two-dimensional modulation techniques such as quadrature amplitude modulation (QAM). In SDMA time division duplex (TDD) systems, where channel reciprocity is maintained, uplink (UL) channel sounding method is considered as one of the most promising feedback methods due to its bandwidth and delay efficiency. Conventional channel sounding (CCS) only conveys the channel state information (CSI) of each active user to the base station (BS). Due to the limitation in system performance because of co-channel interference (CCI) from adjacent cells in interference-limited scenarios, CSI is only a suboptimal metric for multiuser spatial multiplexing optimization. The first major contribution of this theses is a novel interference feedback method proposed to provide the BS with implicit knowledge about the interference level received by each mobile station (MS). More specifically, it is proposed to weight the conventional channel sounding pilots by the level of the experienced interference at the user’s side. Interference-weighted channel sounding (IWCS) acts as a spectrally efficient feedback technique that provides the BS with implicit knowledge about CCI experienced by each MS, and significantly improves the downlink (DL) sum capacity for both greedy and fair scheduling policies. For the sake of completeness, a novel procedure is developed to make the IWCS pilots usable for UL optimization. It is proposed to divide the optimization metric obtained from the IWCS pilots by the interference experienced at the BS’s antennas. The resultant new metric, the channel gain divided by the multiplication of DL and UL interference, provides link-protection awareness and is used to optimize both UL and DL. Using maximum capacity scheduling criterion, the link-protection aware metric results in a gain in the median system sum capacity of 26.7% and 12.5% in DL and UL respectively compared to the case when conventional channel sounding techniques are used. Moreover, heuristic algorithm has been proposed in order to facilitate a practical optimization and to reduce the computational complexity. The second major contribution of this theses is an innovative transmission approach, referred to as subcarrier-index modulation (SIM), which is proposed to be integrated with OFDM. The key idea of SIM is to employ the subcarrier-index to convey information to the receiver. Furthermore, a closed-form analytical bit error ratio (BER) of SIM OFDM in Rayleigh channel is derived. Simulation results show BER performance gain of 4 dB over 4-QAM OFDM for both coded and uncoded data without power saving policy. Alternatively, power saving policy maintains an average gain of 1 dB while only using half OFDM symbol transmit power.
9

Index Modulation Techniques for Energy-efficient Transmission in Large-scale MIMO Systems

Sefunc, Merve 16 March 2020 (has links)
This thesis exploits index modulation techniques to design energy- and spectrum-efficient system models to operate in future wireless networks. In this respect, index modulation techniques are studied considering two different media: mapping the information onto the frequency indices of multicarrier systems, and onto the antenna array indices of a platform that comprises multiple antennas. The index modulation techniques in wideband communication scenarios considering orthogonal and generalized frequency division multiplexing systems are studied first. Single cell multiuser networks are considered while developing the system models that exploit the index modulation on the subcarriers of the multicarrier systems. Instead of actively modulating all the subcarriers, a subset is selected according to the index modulation bits. As a result, there are subcarriers that remain idle during the data transmission phase and the activation pattern of the subcarriers convey additional information. The transceivers for the orthogonal and generalized frequency division multiplexing systems with index modulation are both designed considering the uplink and downlink transmission phases with a linear combiner and precoder in order to reduce the system complexity. In the developed system models, channel state information is required only at the base station. The linear combiner is designed adopting minimum mean square error method to mitigate the inter-user-interference. The proposed system models offer a flexible design as the parameters are independent of each other. The parameters can be adjusted to design the system in favor of the energy efficiency, spectrum efficiency, peak-to-average power ratio, or error performance. Then, the index modulation techniques are studied for large-scale multiple-input multiple-output systems that operate in millimeter wave bands. In order to overcome the drawbacks of transmission in millimeter wave frequencies, channel properties should be taken in to account while envisaging the wireless communication network. The large-scale multiple-input multiple-output systems increase the degrees of freedom in the spatial domain. This feature can be exploited to focus the transmit power directly onto the intended receiver terminal to cope with the severe path-loss. However, scaling up the number of hardware elements results in excessive power consumption. Hybrid architectures provide a remedy by shifting a part of the signal processing to the analog domain. In this way, the number of bulky and high power consuming hardware elements can be reduced. However, there will be a performance degradation as a consequence of renouncing the fully digital signal processing. Index modulation techniques can be combined with the hybrid system architecture to compensate the loss in spectrum efficiency to further increase the data rates. A user terminal architecture is designed that employs analog beamforming together with spatial modulation where a part of the information bits is mapped onto the indices of the antenna arrays. The system is comprised a switching stage that allocates the user terminal antennas on the phase shifter groups to minimize the spatial correlation, and a phase shifting stage that maximizes the beamforming gain to combat the path-loss. A computationally efficient optimization algorithm is developed to configure the system. The flexibility of the architecture enables optimization of the hybrid transceiver at any signal-to-noise ratio values. A base station is designed in which hybrid beamforming together with spatial modulation is employed. The analog beamformer is designed to point the transmit beam only in the direction of the intended user terminal to mitigate leakage of the transmit power to other directions. The analog beamformer to transmit the signal is chosen based on the spatial modulation bits. The digital precoder is designed to eliminate the inter-user-interference by exploiting the zero-forcing method. The base station computes the hybrid beamformers and the digital combiners, and only feeds back the digital combiners of each antenna array-user pair to the related user terminals. Thus, a low complexity user architecture is sufficient to achieve a higher performance. The developed optimization framework for the energy efficiency jointly optimizes the number of served users and the total transmit power by utilizing the derived upper bound of the achievable rate. The proposed transceiver architectures provide a more energy-efficient system model compared to the hybrid systems in which the spatial modulation technique is not exploited. This thesis develops low-complexity system models that operate in narrowband and wideband channel environments to meet the energy and spectrum efficiency demands of future wireless networks. It is corroborated in the thesis that adopting index modulation techniques both in the systems improves the system performance in various aspects.:1 Introduction 1 1.1 Motivation 1 1.2 Overview and Contribution 2 1.3 Outline 9 2 Preliminaries and Fundamentals 13 2.1 Multicarrier Systems 13 2.2 Large-scale Multiple Input Multiple Output Systems 17 2.3 Index Modulation Techniques 19 2.4 Single Cell Multiuser Networks 22 3 Multicarrier Systems with Index Modulation 27 3.1 Orthogonal Frequency Division Multiplexing 28 3.2 Generalized Frequency Division Multiplexing 40 3.3 Summary 52 4 Hybrid Beamforming with Spatial Modulation 55 4.1 Uplink Transmission 56 4.2 Downlink Transmission 74 4.3 Summary 106 5 Conclusion and Outlook 109 5.1 Conclusion 109 5.2 Outlook 111 A Quantization Error Derivations 113 B On the Achievable Rate of Gaussian Mixtures 115 B.1 The Conditional Density Function 115 B.2 Tight Bounds on the Differential Entropy 116 B.3 A Bound on the Achievable Rate 118 C Multiuser MIMO Downlink without Spatial Modulation 121 Bibliography
10

[en] MIMO GFDM SYSTEM WITH INDEX MODULATION / [pt] SISTEMA MIMO GFDM COM MODULAÇÃO DE ÍNDICE

JOSE LUIS CALPA JUAJINOY 14 May 2024 (has links)
[pt] A presente tese se dedica ao estudo do sistema de comunicação sem fio MIMO-GFDM-IM. Este sistema, por apresentar atratividades como elevada eficiência espectral, eficiência energética e resiliência ao canal de propagação multipercurso, é de interesse para os futuros sistemas de comunicação. Antecedendo o estudo deste sistema, o modelo de sinais e sistemas para MIMO-GFDM é desenvolvido com base no modelo MIMOOFDM e estratégias de detecção para o sistema são propostas. Uma nova proposta para a detecção MIMO-GFDM, baseada em duas fases de filtragem, é apresentada, resultando em atrativa relação desempenho de detecção e complexidade computacional. O modelo de sistema apresentado é então estendido para incluir a modulação de índice como portadora de informação, resultando no sistema MIMO-GFDM-IM. Inicialmente considerando sistemas ponto-a-ponto, são avaliados diferentes propostas de detectores baseados no processamento da matriz de canal completa e também para os detectores de complexidade reduzida, sob a ótica de desempenho de detecção e complexidade computacional. Por fim, é considerado o sistema MIMO-GFDM-IM no uplink de um sistema multiusuário. / [en] This thesis is dedicated to the study of the MIMO-GFDM-IM wireless communication system. This system, due to its attractiveness such as high spectral efficiency, energy efficiency and resilience to the multipath propagation channel, is of interest for future communication systems. Preceding the study of this system, the model of signals and systems for MIMOGFDM is developed based on the MIMO-OFDM model and detection strategies for the system are proposed. A new proposal for MIMO-GFDM detection, based on two filtering phases, is presented, resulting in an attractive relation between detection performance and computational complexity. The presented system model is then extended to include index modulation as an information carrier, resulting in the MIMO-GFDM-IM system. Initially considering point-to-point systems, different proposals for detectors based on processing the complete channel matrix and also for detectors of reduced complexity are evaluated, from the perspective of detection performance and computational complexity. Finally, the MIMOGFDM-IM system is considered in the uplink of a multiuser system.

Page generated in 0.1097 seconds