• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo ultra-estrutural e citoquímico da relação entre o desenvolvimento da musculatura do vôo e a demanda por vôo dos componentes de colônias de abelhas eussociais

Winckler, Fernanda Fernandez [UNESP] 17 October 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-10-17Bitstream added on 2014-06-13T19:19:41Z : No. of bitstreams: 1 winckler_ff_dr_rcla.pdf: 3138851 bytes, checksum: 75109d4141d10eb2f5e439ee9f66638a (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Apini e Meliponini são tribos compostas por espécies de abelhas classificadas como eussociais avançadas e, portanto, apresentam divisão de trabalho reprodutivo entre as castas femininas e complexas adaptações comportamentais, adquiridas durante a evolução pelas operárias, para desempenhar as tarefas relativas à manutenção da colônia. A capacidade de voar dos adultos destes insetos está intrinsecamente ligada à maioria de suas atividades como o vôo nupcial para o acasalamento no caso das rainhas e machos e a exploração de novo habitat, fontes de alimentos e estabelecimento de novos ninhos no caso das operárias. Tanto em Apis mellifera, quanto em Scaptotrigona postica, o vôo é realizado por músculos denominados músculos indiretos do vôo por não apresentarem ligação direta com as asas. A contração desses músculos produz mudanças de volume no tórax e indiretamente, o movimento das asas. O objetivo deste projeto foi realizar medidas das fibras desse músculo em cada indivíduo e em cada fase da vida, aplicando aos resultados teste estatístico apropriado para verificar possíveis diferenças de desenvolvimento que possam ser relacionadas à função muscular e comparar a ultraestrutura e citoquímica da musculatura do vôo das castas femininas (rainhas e operárias) e machos em diferentes fases da vida, tendo em vista as diferenças comportamentais e fisiológicas entre as classes de indivíduos das duas espécies. O exame da musculatura do vôo, tanto com microscopia de luz como com microscopia eletrônica de varredura e transmissão, mostrou que o arranjo e a morfologia dos feixes musculares e das fibras que os compõe são similares nas duas espécies, no entanto os feixes musculares de Apis mellifera são formados por número maior de fibras. Medições das larguras das fibras mostraram diferenças estatisticamente significante entre as fases da vida... / Apini and Meliponini are tribes composed of species of advanced eusocial bees and therefore present division of reproductive labor between females and complex behavioral adaptations, acquired during the evolution by workers, to attend the responsibilities for the maintenance of the colony. The ability of adults to fly is intrinsically linked to most of their activities as the nuptial flight for mating in the case of queens and males and exploitation of new habitat, sources of food and establishment of new nests in the case of workers. Both in Apis mellifera, as in Scaptotrigona postica, the flight is accomplished by muscles called indirect flight muscles by not make a direct connection with the wings. The contraction of muscles produces changes in volume in the torax and indirectly, movement of the wings. The objective of this project was to perform measurements of muscle fibers from every individual in every stage of life, applying the appropriate statistical test to results in order determine possible differences in development that may be related to muscle function. Alsoo compare the ultra-structure of and cytochemistry of workers, queens and males flight muscle at different stages of life, with the behavioral and physiological differences between the classes of individuals of the two species. The examination of the muscles of the flight, both with light microscopy, and with scanning and transmission electron microscopy, showed that the arrangement and morphology of the muscle fibers bundles arrangement is similar in the two species, however the muscle bundles of Apis mellifera are formed by larger number of musclefibres. Measurements of the width of the fibers showed statistically significant differences between the life phases of the colonies components and between species. Similarly the ultra-structural examination showed that workers of both species emerge with... (Complete abstract click electronic access below)
2

Estudo ultra-estrutural e citoquímico da relação entre o desenvolvimento da musculatura do vôo e a demanda por vôo dos componentes de colônias de abelhas eussociais /

Winckler, Fernanda Fernandez. January 2008 (has links)
Orientador: Carminda da Cruz-Landim / Banca: Ana Maria Costa Leonardo / Banca: Flávio Henrique Caetano / Banca: Zilá Luz Paulino Simões / Banca: José Eduardo Serrão / Resumo: Apini e Meliponini são tribos compostas por espécies de abelhas classificadas como eussociais avançadas e, portanto, apresentam divisão de trabalho reprodutivo entre as castas femininas e complexas adaptações comportamentais, adquiridas durante a evolução pelas operárias, para desempenhar as tarefas relativas à manutenção da colônia. A capacidade de voar dos adultos destes insetos está intrinsecamente ligada à maioria de suas atividades como o vôo nupcial para o acasalamento no caso das rainhas e machos e a exploração de novo habitat, fontes de alimentos e estabelecimento de novos ninhos no caso das operárias. Tanto em Apis mellifera, quanto em Scaptotrigona postica, o vôo é realizado por músculos denominados músculos indiretos do vôo por não apresentarem ligação direta com as asas. A contração desses músculos produz mudanças de volume no tórax e indiretamente, o movimento das asas. O objetivo deste projeto foi realizar medidas das fibras desse músculo em cada indivíduo e em cada fase da vida, aplicando aos resultados teste estatístico apropriado para verificar possíveis diferenças de desenvolvimento que possam ser relacionadas à função muscular e comparar a ultraestrutura e citoquímica da musculatura do vôo das castas femininas (rainhas e operárias) e machos em diferentes fases da vida, tendo em vista as diferenças comportamentais e fisiológicas entre as classes de indivíduos das duas espécies. O exame da musculatura do vôo, tanto com microscopia de luz como com microscopia eletrônica de varredura e transmissão, mostrou que o arranjo e a morfologia dos feixes musculares e das fibras que os compõe são similares nas duas espécies, no entanto os feixes musculares de Apis mellifera são formados por número maior de fibras. Medições das larguras das fibras mostraram diferenças estatisticamente significante entre as fases da vida... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Apini and Meliponini are tribes composed of species of advanced eusocial bees and therefore present division of reproductive labor between females and complex behavioral adaptations, acquired during the evolution by workers, to attend the responsibilities for the maintenance of the colony. The ability of adults to fly is intrinsically linked to most of their activities as the nuptial flight for mating in the case of queens and males and exploitation of new habitat, sources of food and establishment of new nests in the case of workers. Both in Apis mellifera, as in Scaptotrigona postica, the flight is accomplished by muscles called indirect flight muscles by not make a direct connection with the wings. The contraction of muscles produces changes in volume in the torax and indirectly, movement of the wings. The objective of this project was to perform measurements of muscle fibers from every individual in every stage of life, applying the appropriate statistical test to results in order determine possible differences in development that may be related to muscle function. Alsoo compare the ultra-structure of and cytochemistry of workers, queens and males flight muscle at different stages of life, with the behavioral and physiological differences between the classes of individuals of the two species. The examination of the muscles of the flight, both with light microscopy, and with scanning and transmission electron microscopy, showed that the arrangement and morphology of the muscle fibers bundles arrangement is similar in the two species, however the muscle bundles of Apis mellifera are formed by larger number of musclefibres. Measurements of the width of the fibers showed statistically significant differences between the life phases of the colonies components and between species. Similarly the ultra-structural examination showed that workers of both species emerge with... (Complete abstract click electronic access below) / Doutor
3

Developmental and Functional Roles of Troponin-T Isoforms, and Exploring Genome-Wide Alterations in Drosophila Indirect Flight Muscle Mutants

Madan, Aditi January 2015 (has links) (PDF)
Muscle contraction is a highly fine-tuned process that requires the precise and timely construction of large protein sub-assemblies to form sarcomeres, the individual contractile units. Mutations in many of the genes encoding constituent proteins of this macromolecular machine result in defective functioning of the muscle tissue, and in humans, often lead to myopathic conditions like cardiomyopathies and muscular dystrophies, which affect a considerable number of people the world over. As more information regarding causative mutations becomes available, it becomes imperative to explore mechanisms of muscle development, maintenance and pathology. In striated muscles, contraction is regulated by the thin filament-specific tropomyosin (Tm) – troponin (Tn) complex (Ca2+-binding troponin-C, inhibitory troponin-I and tropomyosin-binding troponin-T). These troponin subunits are present in 1:1:1 ratio on thin filaments, with 1 Tm-Tn complex present on every 7th actin molecule. This stoichiometry is tightly regulated, and disturbances have been associated with functional defects. Each of these proteins has multiple isoforms, whose expression is controlled both spatially and temporally. The expression of specific combination of isoforms confers specific contractile properties to each muscle subtype. Drosophila melanogaster has been a preferred model of choice to study various aspects of muscle development for decades. In this study, the Indirect Flight Muscles (IFMs) of Drosophila have been used to investigate developmental and functional roles of two temporally regulated isoforms of a vital structural and regulatory component of the sarcomere – Troponin T (TnT). On a larger scale, whole genome expression profiles of mutants that are null for major myofbrillar proteins have also been discussed. IFMs serve as an excellent model system to address these questions, owing to the extreme ease of genetic manipulability in this system, and high degree of homology between mammalian and Dipteran cytoskeletal proteins. Chapter 1 covers basics of muscle biology, and the role of TnT in muscle contraction. Phenomena responsible for generating diversity in genes encoding muscle proteins – alternative splicing and isoform switching – have also been discussed. These mechanisms are highly conserved, as are patterns of TnT splicing and isoform expression across phyla. Mutations leading to altered splicing patterns lead to myopathic conditions, and the importance of model systems to study muscle biology has been emphasized. The advantages of studying Drosophila IFMs and a comprehensive overview of IFM development has been covered. The resources and experimental tools used have been described in Chapter 2. Two isoforms of TnT are alternatively spliced in the Drosophila thorax – one containing alternative exon 10a (expressed in adult IFMs and jump muscle); and one containing alternative exon 10b (expressed in pupae and newly eclosed flies). These exons are spliced in a mutually exclusive manner, and defects in splicing have been reported to cause uncontrolled, auto-destructive contractions. In Chapter 3, a splice mutant of TnT, up1, has been discussed, with respect to its developmental profile. Transgenic rescue experiments with two separate isoforms demonstrate rescue at the structural as well as functional level. Transgenic over-expression, however, leads to functional abnormalities, highlighting the importance of stoichiometry in multi-protein complexes. In Chapter 4, molecular signals that bring about the developmentally regulated TnT isoform switch are discussed. A splicing factor, Muscleblind, has been transgenically knocked down in normal and mutant IFMs to study effects on muscle function. Chapter 5 looks at whole genome transcriptional alterations in muscles null for either actin or myosin. All significant expression changes have been classified into categories based on different biological processes, and an attempt to differentiate generic muscle responses from filament-specific responses has been made. In conclusion, the studies have highlighted the importance of TnT isoform switching, and that extended expression of a pupal stage-specific isoform can partially compensate for loss of the adult isoform. Also, in the absence of major myofibrillar proteins, stress response pathways like heat shock response and protein degradation pathways are activated, along with a subset of metabolic responses that are unique to the thin or thick filament systems.

Page generated in 0.0827 seconds