• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Steel Corrosion Products in Reinforced Concrete

Metaferia, Ineku Amhayesus 14 May 2021 (has links)
Steel corrosion is one of the major distress mechanisms that causes the deterioration of reinforced concrete structures around the world. It is an electrochemical reaction between the reinforcing steel and the surrounding concrete that produces a mass loss of the metal. Through the process of corrosion in reinforced concrete, iron ions get oxidized to form corrosion products (CP). Although multiple experiments and studies have been developed to understand the rheological behavior of corrosion products, this topic stays inconclusive. This work aims to characterize corrosion products at micro-scale in order to trace the progress of the formation of rust, to determine its nature and to analyse its rheological behavior in reinforced concrete. An experimental procedure to produce CP in the laboratory is also presented in this research. In addition, material characterization methods have been used to identify the iron oxide phases present in CP, determine their viscosity and rheological behavior and to study how CP flows in a porous media. In order to identify the different stages in the corrosion process, the CP was analysed at 2, 4, 6 and 8 weeks. The experiments identified four phases of iron oxide for each period. Furthermore, it was found that CP behaves as a shear-thinning slurry and as a result, its viscosity decreases with the applied shear rate. In addition, the damage caused by CP on concrete depends on the w/c ratio of the concrete mix and the exposure time to a corroding environment. The rebar mass loss results show that CP is formed in layers around the rebar, and the flow of each CP layer can differ.
2

Avaliação do fenômeno de união de trincas induzidas pelo hidrogênio e sua influência na integridade estrutural de um vaso de pressão

Franceschini, André Schwarz January 2011 (has links)
Componentes e equipamentos utilizados na indústria petroquímica estão suscetíveis a presença de descontinuidades e, por esta razão, diversas pesquisas são desenvolvidas com o intuito de aprimorar e criar novos métodos para evitar, remediar ou controlar estas, de forma a não causarem um dano à integridade estrutural. Neste trabalho é avaliado um conjunto de trincas induzidas pelo hidrogênio (TIH), através do método de elementos finitos, com a finalidade de verificar o fenômeno de união das suas extremidades formando uma trinca contínua do tipo SWC (Stepwise Cracking). Também se verifica a influência do conjunto de trincas à integridade da estrutura com base na metodologia Fitness for Service (FFS) através do uso dos diagramas de avaliação de falhas (FAD – Failure Assessment Diagram) indicados pelas normas API-579 / ASME FFS-1 e BS 7910 além do procedimento CEGB-R6. Os resultados mostram que o efeito de interação entre as extremidades é intenso quando estas se encontram próximas umas das outras, confirmando assim a tendência de união das fissuras. Também se constata que o fenômeno é fortemente influenciado pela pressão interna presente nas TIH, esta causada pela presença de hidrogênio. Em relação à aceitabilidade das descontinuidades, é observado que os resultados da avaliação são influenciados pela maneira como a descontinuidade é caracterizada. / Components and equipments of the petrochemical industry are susceptible to the presence of flaws and, for this reason, several studies are developed aiming to improve and create new methods to avoid, remedy and control these flaws in order they will not cause any integrity damage. In this work a cluster of Hydrogen Induced Crack (HIC) is assessed, using the finite element method, with the goal to verify the union phenomena in their tips forming a Stepwise Cracking (SWC) flaw. Also is verified the influence of the cluster to the integrity of the structure based on the Fitness for Service methodology, using the Failure Assessment Diagrams indicated by the Standards API-579 / ASME FFS-1 and BS 7910, also the CEGBR6 procedure. The results show that the interaction effect among the tip of the cracks is considerably intense when they are near to each other, confirming the tendency of union among them. Also this phenomenon is strongly influenced by the internal pressure in the HIC, caused by the presence of atomic Hydrogen diffused in the structure. In relation to the flaw assessment, it is observed that results are strongly influenced on how the flaw is characterized.
3

Avaliação do fenômeno de união de trincas induzidas pelo hidrogênio e sua influência na integridade estrutural de um vaso de pressão

Franceschini, André Schwarz January 2011 (has links)
Componentes e equipamentos utilizados na indústria petroquímica estão suscetíveis a presença de descontinuidades e, por esta razão, diversas pesquisas são desenvolvidas com o intuito de aprimorar e criar novos métodos para evitar, remediar ou controlar estas, de forma a não causarem um dano à integridade estrutural. Neste trabalho é avaliado um conjunto de trincas induzidas pelo hidrogênio (TIH), através do método de elementos finitos, com a finalidade de verificar o fenômeno de união das suas extremidades formando uma trinca contínua do tipo SWC (Stepwise Cracking). Também se verifica a influência do conjunto de trincas à integridade da estrutura com base na metodologia Fitness for Service (FFS) através do uso dos diagramas de avaliação de falhas (FAD – Failure Assessment Diagram) indicados pelas normas API-579 / ASME FFS-1 e BS 7910 além do procedimento CEGB-R6. Os resultados mostram que o efeito de interação entre as extremidades é intenso quando estas se encontram próximas umas das outras, confirmando assim a tendência de união das fissuras. Também se constata que o fenômeno é fortemente influenciado pela pressão interna presente nas TIH, esta causada pela presença de hidrogênio. Em relação à aceitabilidade das descontinuidades, é observado que os resultados da avaliação são influenciados pela maneira como a descontinuidade é caracterizada. / Components and equipments of the petrochemical industry are susceptible to the presence of flaws and, for this reason, several studies are developed aiming to improve and create new methods to avoid, remedy and control these flaws in order they will not cause any integrity damage. In this work a cluster of Hydrogen Induced Crack (HIC) is assessed, using the finite element method, with the goal to verify the union phenomena in their tips forming a Stepwise Cracking (SWC) flaw. Also is verified the influence of the cluster to the integrity of the structure based on the Fitness for Service methodology, using the Failure Assessment Diagrams indicated by the Standards API-579 / ASME FFS-1 and BS 7910, also the CEGBR6 procedure. The results show that the interaction effect among the tip of the cracks is considerably intense when they are near to each other, confirming the tendency of union among them. Also this phenomenon is strongly influenced by the internal pressure in the HIC, caused by the presence of atomic Hydrogen diffused in the structure. In relation to the flaw assessment, it is observed that results are strongly influenced on how the flaw is characterized.
4

Avaliação do fenômeno de união de trincas induzidas pelo hidrogênio e sua influência na integridade estrutural de um vaso de pressão

Franceschini, André Schwarz January 2011 (has links)
Componentes e equipamentos utilizados na indústria petroquímica estão suscetíveis a presença de descontinuidades e, por esta razão, diversas pesquisas são desenvolvidas com o intuito de aprimorar e criar novos métodos para evitar, remediar ou controlar estas, de forma a não causarem um dano à integridade estrutural. Neste trabalho é avaliado um conjunto de trincas induzidas pelo hidrogênio (TIH), através do método de elementos finitos, com a finalidade de verificar o fenômeno de união das suas extremidades formando uma trinca contínua do tipo SWC (Stepwise Cracking). Também se verifica a influência do conjunto de trincas à integridade da estrutura com base na metodologia Fitness for Service (FFS) através do uso dos diagramas de avaliação de falhas (FAD – Failure Assessment Diagram) indicados pelas normas API-579 / ASME FFS-1 e BS 7910 além do procedimento CEGB-R6. Os resultados mostram que o efeito de interação entre as extremidades é intenso quando estas se encontram próximas umas das outras, confirmando assim a tendência de união das fissuras. Também se constata que o fenômeno é fortemente influenciado pela pressão interna presente nas TIH, esta causada pela presença de hidrogênio. Em relação à aceitabilidade das descontinuidades, é observado que os resultados da avaliação são influenciados pela maneira como a descontinuidade é caracterizada. / Components and equipments of the petrochemical industry are susceptible to the presence of flaws and, for this reason, several studies are developed aiming to improve and create new methods to avoid, remedy and control these flaws in order they will not cause any integrity damage. In this work a cluster of Hydrogen Induced Crack (HIC) is assessed, using the finite element method, with the goal to verify the union phenomena in their tips forming a Stepwise Cracking (SWC) flaw. Also is verified the influence of the cluster to the integrity of the structure based on the Fitness for Service methodology, using the Failure Assessment Diagrams indicated by the Standards API-579 / ASME FFS-1 and BS 7910, also the CEGBR6 procedure. The results show that the interaction effect among the tip of the cracks is considerably intense when they are near to each other, confirming the tendency of union among them. Also this phenomenon is strongly influenced by the internal pressure in the HIC, caused by the presence of atomic Hydrogen diffused in the structure. In relation to the flaw assessment, it is observed that results are strongly influenced on how the flaw is characterized.
5

Machining of transparent brittle material by laser-induced seed cracks

Shanmugam, Naveenkumar January 1900 (has links)
Master of Science / Industrial & Manufacturing Systems Engineering / Shuting Lei / Transparent brittle materials such as glass and silicon dioxide have begun to replace the conventional materials due to the advantageous properties including high strength and hardness, resistance to corrosion, wear, chemicals and heat, high electrical isolation, low optical absorption, large optical transmission range and biocompatibility. However because these materials are extremely hard and brittle, development of an ideal machining process has been a challenge for researchers. Non-traditional machining processes such as abrasive jet and ultrasonic machining have improved machining quality but these processes typically results with issues of poor surface integrity, high tool wear and low productivity. Therefore a machining technique that overcomes the disadvantages of existing methods must be developed. This study focused primarily on improving the machinability and attaining crack-free machined surfaces on transparent brittle materials by inducing micro cracks or seed damages on the subsurface of the materials. The hypothesis was that micro-cracks induced by femtosecond laser would synergistically assist the material removal process by a cutting tool by weakening or softening the material, followed by conventional machining process. Laser induced damages due to varying laser intensities and at different depths in bulk BK7 glass was studied in order to select the optimal laser machining conditions for the experiments. Dimensional and structural profiles of laser cracks are observed using an optical microscope. A comparative study of machined untreated BK7 samples and damage induced BK7 samples was conducted. Due to its simple process kinematics and tool geometry, orthogonal machining is used for the study. Results showed that machining laser-treated samples caused an average 75% force reduction on comparison to machining of untreated samples. Laser treated machined samples were produced without subsurface damages, and reduced tool wear was noted. Overall improved machinability of BK7 glass samples was achieved.
6

Small-scale Experiments for Blast-induced Damage: Exploring crack propagation through Digital Image Correlation

Rodriguez San Miguel, Carlota January 2024 (has links)
Blasting plays a crucial role in several engineering applications, from mining and tunneling to demolition projects. One of the remaining challenges of this process is that it can significantly affect the integrity of the rock mass by inducing damage in the form of cracks. Broadening the understanding of the behavior of the blast-induced cracks is essential for predicting the damage. One way of investigating this issue is through small-scale blasting experiments focused on crack propagation behavior. Controlled blasting experiments were conducted on rock-like cylindrical samples charged with Pentaerythritol tetranitrate (PETN) cords. Different blast designs were tested and a method for integrating a Digital Image Correlation (DIC) technique in the analysis was developed. The DIC system was composed of an Ultra High-Speed Camera (UHSC), a light system, and a data acquisition system. The setup was tested in a laboratory and underwent different calibrations before implementing it in the mine, where using explosives during the tests is allowed. The UHSC captured the blasting process regarding crack propagation. To analyze the development of the cracks, DIC technique was employed and results in terms of displacement versus time were measured from the sample surface. The described experiments integrate a novel analysis approach to the results from the DIC technique and propose a way of interpreting the outcomes regarding crack development in terms of velocity. While developing the methodology, the pre-processing of the data (UHSC images) was shown to enhance the DIC analysis and affect the further post-processing of the results. The presented methodology proposes a human-independent procedure of analysis that can help to differentiate the displacement of the crack along its time. Nevertheless, a visual analysis of the results was performed to complement the results and try to broaden the understanding of the crack development process. The DIC results indicated a nonconstant crack propagation velocity while the development patterns were interpreted to match previous literature. The experimental studies confirmed the radial propagation behavior surrounding the blasthole in the single borehole test, while the two borehole configurations show to influence the crack propagation direction and interconnection. This work describes small-scale experiments that provide meaningful insights in crack propagation and how the different blast design parameters can affect their development. The findings of this study could be useful as an input of a predictive tool to assess blast-induced crack initiation and development. / BeFo (Rock Engineering Research Foundation, Sweden) project number 427, “Experimental and Numerical modeling of blast-induced damage around rock tunnel using LS-DYNA”

Page generated in 0.0265 seconds