• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation de structures curvilignes et ses applications en vision par ordinateur / Curvilinear structure modeling and its applications in computer vision

Jeong, Seong-Gyun 23 November 2015 (has links)
Dans cette thèse, nous proposons des modèles de reconstruction de la structure curviligne fondée sur la modélisation stochastique et sur un système d’apprentissage structuré. Nous supposons que le réseau de lignes, dans sa totalité, peut être décomposé en un ensemble de segments de ligne avec des longueurs et orientations variables. Cette hypothèse nous permet de reconstituer des formes arbitraires de la structure curviligne pour différents types de jeux de données. Nous calculons les descripteurs des caractéristiques curvilignes fondés sur les profils des gradients d’image et les profils morphologiques. Pour le modèle stochastique, nous proposons des contraintes préalables qui définissent l'interaction spatiale des segments de ligne. Pour obtenir une configuration optimale correspondant à la structure curviligne latente, nous combinons plusieurs hypothèses de ligne qui sont calculées par échantillonnage MCMC avec différents jeux de paramètres. De plus, nous apprenons une fonction de classement qui prédit la correspondance du segment de ligne donné avec les structures curvilignes latentes. Une nouvelle méthode fondée sur les graphes est proposée afin d’inférer la structure sous-jacente curviligne en utilisant les classements de sortie des segments de ligne. Nous utilisons nos modèles pour analyser la structure curviligne sur des images statiques. Les résultats expérimentaux sur de nombreux types de jeux de données démontrent que les modèles de structure curviligne proposés surpassent les techniques de l'état de l'art. / In this dissertation, we propose curvilinear structure reconstruction models based on stochastic modeling and ranking learning system. We assume that the entire line network can be decomposed into a set of line segments with variable lengths and orientations. This assumption enables us to reconstruct arbitrary shapes of curvilinear structure for different types of datasets. We compute curvilinear feature descriptors based on the image gradient profiles and the morphological profiles. For the stochastic model, we propose prior constraints that define the spatial interaction of line segments. To obtain an optimal configuration corresponding to the latent curvilinear structure, we combine multiple line hypotheses which are computed by MCMC sampling with different parameter sets. Moreover, we learn a ranking function which predicts the correspondence of the given line segment and the latent curvilinear structures. A novel graph-based method is proposed to infer the underlying curvilinear structure using the output rankings of the line segments. We apply our models to analyze curvilinear structure on static images. Experimental results on wide types of datasets demonstrate that the proposed curvilinear structure modeling outperforms the state-of-the-art techniques.

Page generated in 0.0801 seconds