• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inférence topologique

Prévost, Noémie 02 1900 (has links)
Les données provenant de l'échantillonnage fin d'un processus continu (champ aléatoire) peuvent être représentées sous forme d'images. Un test statistique permettant de détecter une différence entre deux images peut être vu comme un ensemble de tests où chaque pixel est comparé au pixel correspondant de l'autre image. On utilise alors une méthode de contrôle de l'erreur de type I au niveau de l'ensemble de tests, comme la correction de Bonferroni ou le contrôle du taux de faux-positifs (FDR). Des méthodes d'analyse de données ont été développées en imagerie médicale, principalement par Keith Worsley, utilisant la géométrie des champs aléatoires afin de construire un test statistique global sur une image entière. Il s'agit d'utiliser l'espérance de la caractéristique d'Euler de l'ensemble d'excursion du champ aléatoire sous-jacent à l'échantillon au-delà d'un seuil donné, pour déterminer la probabilité que le champ aléatoire dépasse ce même seuil sous l'hypothèse nulle (inférence topologique). Nous exposons quelques notions portant sur les champs aléatoires, en particulier l'isotropie (la fonction de covariance entre deux points du champ dépend seulement de la distance qui les sépare). Nous discutons de deux méthodes pour l'analyse des champs anisotropes. La première consiste à déformer le champ puis à utiliser les volumes intrinsèques et les compacités de la caractéristique d'Euler. La seconde utilise plutôt les courbures de Lipschitz-Killing. Nous faisons ensuite une étude de niveau et de puissance de l'inférence topologique en comparaison avec la correction de Bonferroni. Finalement, nous utilisons l'inférence topologique pour décrire l'évolution du changement climatique sur le territoire du Québec entre 1991 et 2100, en utilisant des données de température simulées et publiées par l'Équipe Simulations climatiques d'Ouranos selon le modèle régional canadien du climat. / Data coming from a fine sampling of a continuous process (random field) can be represented as images. A statistical test aiming at detecting a difference between two images can be seen as a group of tests in which each pixel is compared to the corresponding pixel in the other image. We then use a method to control the type I error over all the tests, such as the Bonferroni correction or the control of the false discovery rate (FDR). Methods of data analysis have been developped in the field of medical imaging, mainly by Keith Worsley, using the geometry of random fields in order to build a global statistical test over the whole image. The expected Euler characteristic of the excursion set of the random field underlying the sample over a given threshold is used in order to determine the probability that the random field exceeds this same threshold under the null hypothesis (topological inference). We present some notions relevant to random fields, in particular isotropy (the covariance function between two given points of a field depends only on the distance between them). We discuss two methods for the analysis of non\-isotropic random fields. The first one consists in deforming the field and then using the intrinsic volumes and the Euler characteristic densities. The second one uses the Lipschitz-Killing curvatures. We then perform a study of sensitivity and power of the topological inference technique comparing it to the Bonferonni correction. Finally, we use topological inference in order to describe the evolution of climate change over Quebec territory between 1991 and 2100 using temperature data simulated and published by the Climate Simulation Team at Ouranos, with the Canadian Regional Climate Model CRCM4.2.
2

Inférence topologique

Prévost, Noémie 02 1900 (has links)
Les données provenant de l'échantillonnage fin d'un processus continu (champ aléatoire) peuvent être représentées sous forme d'images. Un test statistique permettant de détecter une différence entre deux images peut être vu comme un ensemble de tests où chaque pixel est comparé au pixel correspondant de l'autre image. On utilise alors une méthode de contrôle de l'erreur de type I au niveau de l'ensemble de tests, comme la correction de Bonferroni ou le contrôle du taux de faux-positifs (FDR). Des méthodes d'analyse de données ont été développées en imagerie médicale, principalement par Keith Worsley, utilisant la géométrie des champs aléatoires afin de construire un test statistique global sur une image entière. Il s'agit d'utiliser l'espérance de la caractéristique d'Euler de l'ensemble d'excursion du champ aléatoire sous-jacent à l'échantillon au-delà d'un seuil donné, pour déterminer la probabilité que le champ aléatoire dépasse ce même seuil sous l'hypothèse nulle (inférence topologique). Nous exposons quelques notions portant sur les champs aléatoires, en particulier l'isotropie (la fonction de covariance entre deux points du champ dépend seulement de la distance qui les sépare). Nous discutons de deux méthodes pour l'analyse des champs anisotropes. La première consiste à déformer le champ puis à utiliser les volumes intrinsèques et les compacités de la caractéristique d'Euler. La seconde utilise plutôt les courbures de Lipschitz-Killing. Nous faisons ensuite une étude de niveau et de puissance de l'inférence topologique en comparaison avec la correction de Bonferroni. Finalement, nous utilisons l'inférence topologique pour décrire l'évolution du changement climatique sur le territoire du Québec entre 1991 et 2100, en utilisant des données de température simulées et publiées par l'Équipe Simulations climatiques d'Ouranos selon le modèle régional canadien du climat. / Data coming from a fine sampling of a continuous process (random field) can be represented as images. A statistical test aiming at detecting a difference between two images can be seen as a group of tests in which each pixel is compared to the corresponding pixel in the other image. We then use a method to control the type I error over all the tests, such as the Bonferroni correction or the control of the false discovery rate (FDR). Methods of data analysis have been developped in the field of medical imaging, mainly by Keith Worsley, using the geometry of random fields in order to build a global statistical test over the whole image. The expected Euler characteristic of the excursion set of the random field underlying the sample over a given threshold is used in order to determine the probability that the random field exceeds this same threshold under the null hypothesis (topological inference). We present some notions relevant to random fields, in particular isotropy (the covariance function between two given points of a field depends only on the distance between them). We discuss two methods for the analysis of non\-isotropic random fields. The first one consists in deforming the field and then using the intrinsic volumes and the Euler characteristic densities. The second one uses the Lipschitz-Killing curvatures. We then perform a study of sensitivity and power of the topological inference technique comparing it to the Bonferonni correction. Finally, we use topological inference in order to describe the evolution of climate change over Quebec territory between 1991 and 2100 using temperature data simulated and published by the Climate Simulation Team at Ouranos, with the Canadian Regional Climate Model CRCM4.2.
3

Topological inference from measures / Inférence topologique à partir de mesures

Buchet, Mickaël 01 December 2014 (has links)
La quantité de données disponibles n'a jamais été aussi grande. Se poser les bonnes questions, c'est-à-dire des questions qui soient à la fois pertinentes et dont la réponse est accessible est difficile. L'analyse topologique de données tente de contourner le problème en ne posant pas une question trop précise mais en recherchant une structure sous-jacente aux données. Une telle structure est intéressante en soi mais elle peut également guider le questionnement de l'analyste et le diriger vers des questions pertinentes. Un des outils les plus utilisés dans ce domaine est l'homologie persistante. Analysant les données à toutes les échelles simultanément, la persistance permet d'éviter le choix d'une échelle particulière. De plus, ses propriétés de stabilité fournissent une manière naturelle pour passer de données discrètes à des objets continus. Cependant, l'homologie persistante se heurte à deux obstacles. Sa construction se heurte généralement à une trop large taille des structures de données pour le travail en grandes dimensions et sa robustesse ne s'étend pas au bruit aberrant, c'est-à-dire à la présence de points non corrélés avec la structure sous-jacente.Dans cette thèse, je pars de ces deux constatations et m'applique tout d'abord à rendre le calcul de l'homologie persistante robuste au bruit aberrant par l'utilisation de la distance à la mesure. Utilisant une approximation du calcul de l'homologie persistante pour la distance à la mesure, je fournis un algorithme complet permettant d'utiliser l'homologie persistante pour l'analyse topologique de données de petite dimension intrinsèque mais pouvant être plongées dans des espaces de grande dimension. Précédemment, l'homologie persistante a également été utilisée pour analyser des champs scalaires. Ici encore, le problème du bruit aberrant limitait son utilisation et je propose une méthode dérivée de l'utilisation de la distance à la mesure afin d'obtenir une robustesse au bruit aberrant. Cela passe par l'introduction de nouvelles conditions de bruit et l'utilisation d'un nouvel opérateur de régression. Ces deux objets font l'objet d'une étude spécifique. Le travail réalisé au cours de cette thèse permet maintenant d'utiliser l'homologie persistante dans des cas d'applications réelles en grandes dimensions, que ce soit pour l'inférence topologique ou l'analyse de champs scalaires. / Massive amounts of data are now available for study. Asking questions that are both relevant and possible to answer is a difficult task. One can look for something different than the answer to a precise question. Topological data analysis looks for structure in point cloud data, which can be informative by itself but can also provide directions for further questioning. A common challenge faced in this area is the choice of the right scale at which to process the data.One widely used tool in this domain is persistent homology. By processing the data at all scales, it does not rely on a particular choice of scale. Moreover, its stability properties provide a natural way to go from discrete data to an underlying continuous structure. Finally, it can be combined with other tools, like the distance to a measure, which allows to handle noise that are unbounded. The main caveat of this approach is its high complexity.In this thesis, we will introduce topological data analysis and persistent homology, then show how to use approximation to reduce the computational complexity. We provide an approximation scheme to the distance to a measure and a sparsifying method of weighted Vietoris-Rips complexes in order to approximate persistence diagrams with practical complexity. We detail the specific properties of these constructions.Persistent homology was previously shown to be of use for scalar field analysis. We provide a way to combine it with the distance to a measure in order to handle a wider class of noise, especially data with unbounded errors. Finally, we discuss interesting opportunities opened by these results to study data where parts are missing or erroneous.

Page generated in 0.0871 seconds