Spelling suggestions: "subject:"nféhence basécartésienne"" "subject:"nféhence baýcartésienne""
1 |
Exact Bayesian Inference in Graphical Models : Tree-structured Network Inference and Segmentation / Inférence bayésienne exacte dans les modèles graphiques : inférence de réseaux à structure arborescente et segmentationSchwaller, Loïc 09 September 2016 (has links)
Cette thèse porte sur l'inférence de réseaux. Le cadre statistique naturel à ce genre de problèmes est celui des modèles graphiques, dans lesquels les relations de dépendance et d'indépendance conditionnelles vérifiées par une distribution multivariée sont représentées à l'aide d'un graphe. Il s'agit alors d'apprendre la structure du modèle à partir d'observations portant sur les sommets. Nous considérons le problème d'un point de vue bayésien. Nous avons également décidé de nous concentrer sur un sous-ensemble de graphes permettant d'effectuer l'inférence de manière exacte et efficace, à savoir celui des arbres couvrants. Il est en effet possible d'intégrer une fonction définie sur les arbres couvrants en un temps cubique par rapport au nombre de variables à la condition que cette fonction factorise selon les arêtes, et ce malgré le cardinal super-exponentiel de cet ensemble. En choisissant les distributions a priori sur la structure et les paramètres du modèle de manière appropriée, il est possible de tirer parti de ce résultat pour l'inférence de modèles graphiques arborescents. Nous proposons un cadre formel complet pour cette approche.Nous nous intéressons également au cas où les observations sont organisées en série temporelle. En faisant l'hypothèse que la structure du modèle graphique latent subit un certain nombre de brusques changements, le but est alors de retrouver le nombre et la position de ces points de rupture. Il s'agit donc d'un problème de segmentation. Sous certaines hypothèses de factorisation, l'exploration exhaustive de l'ensemble des segmentations est permise et, combinée aux résultats sur les arbres couvrants, permet d'obtenir, entre autres, la distribution a posteriori des points de ruptures en un temps polynomial à la fois par rapport au nombre de variables et à la longueur de la série. / In this dissertation we investigate the problem of network inference. The statistical frame- work tailored to this task is that of graphical models, in which the (in)dependence relation- ships satis ed by a multivariate distribution are represented through a graph. We consider the problem from a Bayesian perspective and focus on a subset of graphs making structure inference possible in an exact and e cient manner, namely spanning trees. Indeed, the integration of a function de ned on spanning trees can be performed with cubic complexity with respect to number of variables under some factorisation assumption on the edges, in spite of the super-exponential cardinality of this set. A careful choice of prior distributions on both graphs and distribution parameters allows to use this result for network inference in tree-structured graphical models, for which we provide a complete and formal framework.We also consider the situation in which observations are organised in a multivariate time- series. We assume that the underlying graph describing the dependence structure of the distribution is a ected by an unknown number of abrupt changes throughout time. Our goal is then to retrieve the number and locations of these change-points, therefore dealing with a segmentation problem. Using spanning trees and assuming that segments are inde- pendent from one another, we show that this can be achieved with polynomial complexity with respect to both the number of variables and the length of the series.
|
2 |
Modèles statistiques pour l'extrapolation de l'information adulte à l'enfant dans les essais cliniques / Statistical models for extrapolation of adult to child information in clinical trialsPetit, Caroline 09 March 2017 (has links)
Cette thèse est consacrée aux méthodes statistiques d’extrapolation dans les essais de recherche de dose en pédiatrie. Dans un premier temps, nous réalisons une revue systématique de la littérature sur le sujet. Elle met en évidence la nécessité de proposer de nouvelles méthodes pour la conception des études d’escalade de dose chez l’enfant. Nous apportons des réponses à cette problématique en exploitant l’information disponible chez l’adulte. Dans une première série de travaux, nous étudions l’intérêt de la prédiction des paramètres pharmacocinétiques (PK) en pédiatrie à l’aide de méthodes d’extrapolation : l’allométrie et la maturation. Cette évaluation est réalisée à partir de données PK chez l’adulte et l’enfant pour la méfloquine. Faisant appel aux paramètres prédits, nous développons une approche pour choisir les temps de prélèvements (design) d’une étude PK. Nous recommandons un design obtenu par optimisation grâce à la méthode de D-optimalité en utilisant le logiciel PFIM. Ce design est ensuite validé à l’aide de simulations sur différents modèles. Une seconde série de travaux nous amène à proposer des recommandations pour la planification d’un essai de recherche de dose. Nous avançons d’abord des techniques pour choisir les doses à tester grâce à l’utilisation des données adultes et de l’extrapolation. Nous proposons ensuite une méthode proche de la méta-analyse pour prédire les probabilités de toxicités pour chaque dose. Enfin, nous employons la méthode de l’Effective sample size afin de construire une loi a priori lors de l’utilisation d’une estimation bayésienne. Nous validons ces recommandations sur une étude de cas en utilisant une méthode d’escalade de dose, la méthode de réévaluation séquentielle bivariée, pour laquelle nous évaluons à la fois la toxicité et l’efficacité. A partir de l’exemple de la molécule erlotinib, nous effectuons une série de simulations sur plusieurs scénarios afin d’illustrer les performances de la planification. / This thesis addresses extrapolation techniques for statistical models for dose-finding studies in pediatrics. After a litterature review on these clinical trials, we observed the need of methodological propositions for the planification of dose- finding studies in pediatrics. We deal with this issue using information from the adult population. In a first research, the objectives are to design a pharmacokinetic (PK) study by using information from adults and evaluate the robustness of the recommended design through a case study of mefloquine. Pediatric PK parameters are predicted from adult PK using extrapolation functions such as allometry and maturation. A D-optimal design for children is obtained with PFIM by assuming the extrapolated design. The robustness of the recommended design is evaluated in a simulation study with four different models and is compared to the empirical design used for the pediatric data. In a second research, we propose a global approach to conduct a pediatric dose-finding clinical trial using extrapolation from adult information. First, we extrapolate the dose-range from adults using allometry and maturation. Then, using an approach to meta-analysis, we choose the initial probabilities of toxicity for each dose. Finally, we use the effective sample size method to choose the prior distribution of parameters in a Bayesian setting. We perform a simulation study based on the molecule erlotinib to evaluate the performances of this global approach.
|
Page generated in 0.0836 seconds