Spelling suggestions: "subject:"forminformation maximization"" "subject:"forminformation maximizations""
1 |
A Biologically Plausible Learning Rule for the Infomax on Recurrent Neural Networks. / 生物学的に想定しうるリカレント結合神経回路上の情報量最大化学習則Hayakawa, Takashi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18874号 / 医博第3985号 / 新制||医||1008(附属図書館) / 31825 / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邉 大, 教授 山田 亮, 教授 福山 秀直 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
2 |
General-purpose optimization through information maximizationLockett, Alan Justin 05 July 2012 (has links)
The primary goal of artificial intelligence research is to develop a
machine capable of learning to solve disparate real-world tasks
autonomously, without relying on specialized problem-specific
inputs. This dissertation suggests that such machines are
realistic: If No Free Lunch theorems were to apply to all real-world
problems, then the world would be utterly unpredictable. In
response, the dissertation proposes the information-maximization
principle, which claims that the optimal optimization methods make
the best use of the information available to them. This principle
results in a new algorithm, evolutionary annealing, which is shown
to perform well especially in challenging problems with irregular
structure. / text
|
Page generated in 0.1169 seconds