• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Schlumberger array - potential and pitfalls in archaeological prospection

Gaffney, Christopher F., Aspinall, A. January 2001 (has links)
No / The orientation-sensitive performance of the Schlumberger array, when used to survey narrow, linear features, has long been recognized in geophysical prospecting for geology. However, in spite of frequent use of the array for archaeological survey, particularly in eastern Europe and the Far East, this directional effect is not apparent in the survey of walls and ditches. In order to examine the array's performance some experiments were carried out in a shallow electrolytic tank using insulating and conducting cylinders. Broadside and longitudinal traverses with systematic expansion of the current electrode spacing facilitated the production of pseudosections. The results confirmed the high selectivity of the Schlumberger response to the orientation of the feature. Broadside traverse of the conductor and longitudinal traverse of the insulator produced very large changes: much smaller signals were recorded for the alternative orientations. A subsequent experiment, however, on a simulated ditch in bedrock revealed no signal. The directional effect for a linear insulator was confirmed in field studies of a simple stone-walled structure. Implications for survey of low-contrast linear archaeological features are discussed.
2

A Biologically Plausible Learning Rule for the Infomax on Recurrent Neural Networks. / 生物学的に想定しうるリカレント結合神経回路上の情報量最大化学習則

Hayakawa, Takashi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18874号 / 医博第3985号 / 新制||医||1008(附属図書館) / 31825 / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邉 大, 教授 山田 亮, 教授 福山 秀直 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
3

Perceptual learning of the orientation structure of faces and textures / Learning to perceive orientation structure

Hashemi, Ali January 2018 (has links)
Perceptual learning occurs because observers become more sensitive to informative aspects of the stimuli. Learning the informative aspects of one stimulus set does not transfer to another stimulus set of the same class. In this dissertation, the argument will be made that if observers learn how to discover informative aspects, learning will be more generalizable. However, discovery requires that the informative aspects are not easily apparent. To this end, stimulus orientation structure can be manipulated to contain informative structure in one orientation band, and non-informative structure in the other orientation band. Such a manipulation was inspired by research on face perception: Faces are best identified when decisions are based more on the horizontal relative to the vertical facial structure. Hence, the first three chapters focus on understanding the horizontal bias during face identification, and the final two chapters introduce a novel stimulus set for which horizontal bias may be learned. Chapter 2 identifies a neural marker of horizontal bias that is correlated with face identification accuracy, suggesting that we can predict how well observers identify faces based on their neural sensitivity to horizontal relative to vertical structure. Chapter 3 shows that when face identification accuracy declines due to healthy ageing, so too do behavioural and neural horizontal bias, but Chapter 4 shows that perceptual learning can increase horizontal bias in healthy older adults. Chapter 5 uses texture stimuli and shows that observers can learn to discover informative horizontal structure embedded in uninformative vertical structure. Chapter 6 extends these findings to show that adequate practice results in learning that generalizes to novel textures for which the orientation-selective processing is relevant. The results presented inform our understanding of the neural representations associated with orientation-selective processing, and suggest that observers can learn to discover informative structure conveyed by a particular orientation band. / Thesis / Doctor of Philosophy (PhD)
4

Modelação de fenômenos de plasticidade rápida no sistema visual de mamíferos / Modeling Fast Plasticity Phenomena in the Mammalian Primary Visual Cortex

Oliveira, Rodrigo Freire 09 October 2006 (has links)
Neurônios do córtex visual primário (V1) são seletivos à orientação, direção e freqüência espacial de estímulos apresentados em seus campos receptivos. Os últimos 40 anos acumularam uma quantidade considerável de teorias e dados sobre o processamento cortical de seletividade. Apesar disso, um consenso sobre os mecanismos que geram preferência a orientação, uma das características mais marcantes do processamento visual inicial, ainda está longe de ser atingido. Este cenário torna-se ainda mais interessante quando se considera evidências recentes de plasticidade operando em diferentes escalas temporais em estágios iniciais como V1, que resultam em uma organização dinâmica da seletividade à orientação que se pensava rígida e inflexível no córtex adulto até então. Neste trabalho, descreve-se a construção de um modelo neuronal do córtex visual de primatas composto de 6 camadas corticais representando o canal M de processamento visual. As características fisiológicas e neuroanatômicas do modelo foram derivadas a partir de dados experimentais do sistema visual de primatas. Na primeira parte deste trabalho, o perfil de seletividade à orientação do modelo é apresentado e comparado com resultados experimentais. Os neurônios modelados apresentaram diversidade em seus padrões de seletividade a orientação consistente com dados experimentais (medidos com ISO, VC, MBA). Esta diversidade reflete a heterogeneidade de classes eletrofisiológicas presente no modelo e os diferentes padrões de circuitaria laminar. Na segunda parte examina-se o papel de plasticidade de curto termo na circuitaria intracortical na alteração dinâmica dos perfis de seletividade orientação. Depressão e deslocamento da resposta na vizinhança da orientação preferida foram observados mas não aumento em pontos distantes. Os neurônios simulados apresentaram alguma diversidade nos perfis de plasticidade de curto prazo restrita a camadas com com alta densidade de células com disparo em rajada. / V1 neurons are selective for the orientation, direction and spatial frequency of stimuli presented at their receptive fields. The last 40 years have witnessed the accumulation of a considerable amount of theory and data about the cortical processing of feature selectivity. Yet the mechanisms that underly orientation preference, one of the most conspicuous features of early visual cortical processing, remain far from reaching a consensus. This landscape gets even richer with the recent recognition of different time scales of plasticity operating as early as V1 resulting in a dynamic organization of orientation selectivity previously thought to be rigid and unmodifiable in the adult cortex. In this work we present a spiking neuron model of the primate primary visual cortex composed of 6 cortical layers, representing the M channel of visual processing. The physiological and architectural properties of the model were derived from experimental data for the primate visual pathway. In the first part we present the orientation selectivity profile of the model and discuss its relationship to experimental reports. Neurons have shown a diversity of orientation selectivity dependent responses consistent with data (measured with OSI, CV, HWB). This diversity is thought to reflect the electrophysiological heterogeneity of model cortical cells and the different patterns of laminar circuitry. In the second part of this study we examine the role of shortterm plasticity of the intracortical circuitry in the dynamic modification of orientation selectivity profiles. Depression and shift around preferred orientation but not enhancement at the far flank of the tuning curves are observed. Simulated neurons have also shown some diversity in short-term plasticity restricted to layers with high density of bursting cells.
5

Modelação de fenômenos de plasticidade rápida no sistema visual de mamíferos / Modeling Fast Plasticity Phenomena in the Mammalian Primary Visual Cortex

Rodrigo Freire Oliveira 09 October 2006 (has links)
Neurônios do córtex visual primário (V1) são seletivos à orientação, direção e freqüência espacial de estímulos apresentados em seus campos receptivos. Os últimos 40 anos acumularam uma quantidade considerável de teorias e dados sobre o processamento cortical de seletividade. Apesar disso, um consenso sobre os mecanismos que geram preferência a orientação, uma das características mais marcantes do processamento visual inicial, ainda está longe de ser atingido. Este cenário torna-se ainda mais interessante quando se considera evidências recentes de plasticidade operando em diferentes escalas temporais em estágios iniciais como V1, que resultam em uma organização dinâmica da seletividade à orientação que se pensava rígida e inflexível no córtex adulto até então. Neste trabalho, descreve-se a construção de um modelo neuronal do córtex visual de primatas composto de 6 camadas corticais representando o canal M de processamento visual. As características fisiológicas e neuroanatômicas do modelo foram derivadas a partir de dados experimentais do sistema visual de primatas. Na primeira parte deste trabalho, o perfil de seletividade à orientação do modelo é apresentado e comparado com resultados experimentais. Os neurônios modelados apresentaram diversidade em seus padrões de seletividade a orientação consistente com dados experimentais (medidos com ISO, VC, MBA). Esta diversidade reflete a heterogeneidade de classes eletrofisiológicas presente no modelo e os diferentes padrões de circuitaria laminar. Na segunda parte examina-se o papel de plasticidade de curto termo na circuitaria intracortical na alteração dinâmica dos perfis de seletividade orientação. Depressão e deslocamento da resposta na vizinhança da orientação preferida foram observados mas não aumento em pontos distantes. Os neurônios simulados apresentaram alguma diversidade nos perfis de plasticidade de curto prazo restrita a camadas com com alta densidade de células com disparo em rajada. / V1 neurons are selective for the orientation, direction and spatial frequency of stimuli presented at their receptive fields. The last 40 years have witnessed the accumulation of a considerable amount of theory and data about the cortical processing of feature selectivity. Yet the mechanisms that underly orientation preference, one of the most conspicuous features of early visual cortical processing, remain far from reaching a consensus. This landscape gets even richer with the recent recognition of different time scales of plasticity operating as early as V1 resulting in a dynamic organization of orientation selectivity previously thought to be rigid and unmodifiable in the adult cortex. In this work we present a spiking neuron model of the primate primary visual cortex composed of 6 cortical layers, representing the M channel of visual processing. The physiological and architectural properties of the model were derived from experimental data for the primate visual pathway. In the first part we present the orientation selectivity profile of the model and discuss its relationship to experimental reports. Neurons have shown a diversity of orientation selectivity dependent responses consistent with data (measured with OSI, CV, HWB). This diversity is thought to reflect the electrophysiological heterogeneity of model cortical cells and the different patterns of laminar circuitry. In the second part of this study we examine the role of shortterm plasticity of the intracortical circuitry in the dynamic modification of orientation selectivity profiles. Depression and shift around preferred orientation but not enhancement at the far flank of the tuning curves are observed. Simulated neurons have also shown some diversity in short-term plasticity restricted to layers with high density of bursting cells.
6

Étude de la plasticité du cortex strié par l’entremise de la kétamine et de l’adaptation visuelle

Ouelhazi, Afef 12 1900 (has links)
Le cortex cérébral est impliqué dans plusieurs fonctions entre autres le traitement des informations sensorielles. Il inclut des zones recevant directement une entrée sensorielle telle que le cortex visuel primaire (V1) qui traite les informations visuelles. Au niveau du V1 des mammifères, chaque neurone présente une combinaison préférentielle de stimuli pour lesquels sa réponse est optimale. Cela dit, chaque attribut de stimulus tel que les fréquences temporelle et spatiale, l’orientation et la direction du mouvement induit une réponse maximale du neurone. Le neurone du V1 est donc sélectif. Cependant, cette sélectivité n’est pas le résultat de l’activité du neurone en question seul, mais plutôt du réseau neuronal dans lequel il est impliqué. L’ensemble des préférences d’un neurone ainsi que le réseau neuronal auquel il appartient demeurent sensiblement inchangés, tant que les facteurs contextuels ne varient que peu ou pas. Toutefois, si les composantes de l’environnement changent de manière imposante, la sélectivité neuronale et l’organisation du réseau original seront modifiées pour induire un nouvel état d’équilibre. C’est la plasticité neuronale. Le but ultime de cette thèse est de comprendre et d’approfondir les connaissances relatives aux mécanismes régissant la sélectivité à l’orientation ainsi que la plasticité dans V1, et ce, par différentes études qui sont organisées, dans cette thèse en trois sections. Les sections (3) et (4) se basent sur une étude pharmacologique qui vise à examiner l’effet de la kétamine sur la sélectivité à l’orientation (section 3) et sur l’adaptation visuelle tout en traitant la connectivité neuronale (section 4). La section (5) vise à examiner l’effet de l’adaptation sur l’affinité des courbes d’accord des neurones. Ce travail a permis d’étudier l’effet de la kétamine et de l’adaptation visuelle sur les propriétés sélectives à l’orientation des neurones ainsi que sur la dynamique des relations fonctionnelles au sein du microcircuit. / The cerebral cortex plays a key role in several functions including the processing of sensory information. It contains areas that receive direct sensory input such as the primary visual cortex (V1) which processes visual information. V1 neurons of mammals are selective for several attributes, such as spatial and temporal frequencies, orientation, and direction of motion. Thus, V1 neurons exhibit selectivities. This neuronal selectivity rests in the convergence of clusters of synapses involved in the network. Neural selectivity and networks are formed during the sensitive period of brain development and is present throughout the animal’s life. However, in V1 during postnatal life, the neuronal selectivity and the neural circuitry are further shaped by experience, thus, rendering it plastic. The main objective of the current thesis is to understand the mechanisms involved in the orientation selectivity as well as the neuroplasticity in V1. To this aim, different investigations, organized in this thesis, in three sections, were carried out. The sections (3) and (4) are based on a pharmacological study that aim to examine the effect of ketamine on orientation selectivity (section 3) and on visual adaptation in relation with neural connectivity (section 4). The study presented in the third section (section 5) investigated the effect of adaptation on the cell’s tuning. Here, we disclose the effects of ketamine and visual adaptation on the cell’s tuning properties as well as on the dynamics of functional relationships between neurons in the microcircuit.
7

Investigating the comparative effects of adaptation on supra and infragranular layers with visual and acoustic stimulation in cat’s visual cortex

Chanauria, Nayan 08 1900 (has links)
Dans le cortex visuel primaire (V1 ou l’aire 17) du chat, les neurones répondent aux orientations spécifiques des objets du monde extérieur et forment les colonnes d'orientation dans la zone V1. Un neurone répondant à une orientation horizontale sera excité par le contour horizontal d'un objet. Cette caractéristique de V1 appelée sélectivité d'orientation a été explorée pour étudier les effets de l'adaptation. Suivant un schéma d’entraînement (adaptation), le même neurone ayant initialement répondu à l’orientation horizontale répondra désormais à une orientation oblique. Dans cette thèse, nous étudions les propriétés d'ajustement d'orientation de neurones individuels dans des couches superficielles et plus profondes de V1 dans deux environnements d'adaptation. En raison de la grande interconnectivité entre les neurones de V1, nous émettons l'hypothèse que non seulement les neurones individuels sont affectés par l'adaptation, mais que tout le cortex est reprogrammé par l'adaptation. Des enregistrements extracellulaires ont été effectués sur des chats anesthésiés. Les activités neuronales ont été enregistrées simultanément aux couches 2/3 et à la 5/6 à l'aide d'une électrode de tungstène. Les neurones ont été adaptés à la fois par stimulation visuelle et son répétitif selon deux protocoles différents. Dans les deux cas, une plage stimulante constituée de sinusoïdes à défilement a été présentée pour évoquer les réponses dans V1 et générer des courbes de réglage d'activité multi-unités. La connectivité fonctionnelle entre les neurones enregistrés a été démontrée par un corrélogramme croisé entre les décharges cellulaires captées simultanément. En réponse à l'adaptation visuelle, les neurones des couches 2/3 et 5/6 ont montré des glissements attractifs et répulsifs classiques. En revanche en comparant le comportement des neurones de l'une et l'autre couche, on a observé une tendance équivalente. Les corrélogrammes croisés entre les trains de neurones des couches 2/3 et 5/6 ont révélé des décharges synchronisées entre les neurones. Durant l'adaptation au son, en l'absence totale de stimuli visuel, le glissement des courbes d’accord a été observés chez l'une et l'autre couche indiquant ainsi un changement de la sélectivité de l'orientation. Toutefois, il faut prendre note du fait que les cellules des deux couches ont un glissement aux directions opposées ce qui dénote un comportement indépendant. Nos résultats indiquent que les réponses des neurones du cortex V1 peuvent être évoqués par stimulation directe ou indirecte. La différence de réponses à différents environnements d'adaptation chez les neurones des couches 2/3 et 5/6 indiquent que les neurones de l'aire V1 peuvent choisir de se comporter de la même façon ou différemment lorsque confrontés à divers’ stimuli sensoriels. Ceci suggère que les réponses dans V1 sont dépendantes du stimulus environnemental. Aussi, les décharges synchronisées des neurones de la couche 2/3 et de la couche 5/6 démontre une connectivité fonctionnelle entre les paires de neurones. En définitive on pourrait affirmer que les neurones visuels subissent une altération de leur sélectivité en construisant de nouvelles cartes de sélectivité. À la lumière de nos résultats on pourrait concevoir que le cortex en entier serait multi sensoriel compte tenu de la plasticité entre les zones sensorielles. / In the cat primary visual cortex (V1 or area17), neurons fundamentally respond to orientations of the objects in the outside world. Neurons responding to specific orientations form the orientation columns in V1. A neuron responding to a horizontal orientation will get optimally excited towards the outline of a horizontal object. This feature of the visual cortex known as orientation selectivity has been continuously explored to study the effects of adaptation. Following a training paradigm called adaptation, the same neuron that was inherently responding to the horizontal orientation will respond to an oblique orientation. In this thesis, we seek to examine the orientation tuning properties of individual neurons in superficial and deeper layers of V1 in different adaptation environments. Due to the extensive interconnectivity between V1 neurons, we hypothesize that not only do individual neurons get affected by adaptation paradigm, but the whole cortex is reprogramed. To this aim, extracellular recordings were performed in conventionally prepared anesthetized cats. Neural activities were recorded simultaneously from layer 2/3 and layer 5/6 using a tungsten multichannel electrode. Neurons were adapted with a visual adapter (visual adaptation) and a repetitive sound (sound adaptation) in two different settings. Both types of adaptations were performed uninterrupted for 12 minutes. In both settings, sine-wave drifting gratings were presented to evoke responses in V1 and generate tuning curves from the recorded multiunit activity. The functional connectivity between the recorded neurons was revealed by computing cross-correlation between individual neuron pairs. In response to visual adaptation, layer 2/3 and 5/6 neurons displayed classical attractive and repulsive shifts. On comparing the behaviour of the neurons in either layer, an equivalent tendency was observed. Cross-correlograms between the spike trains of neurons in layers 2/3 and 5/6 revealed synchronized firing between the neurons suggesting coordinated dynamics of the co-active neurons and their functional connections. During sound adaptation, where the visual adapter was completely absent, shifts in the tuning curves were observed in either layer indicating a novel orientation selectivity. However, it is noteworthy that cells in both layers shifted in opposite directions indicating independent behaviour. V1 neurons might have an additional role besides processing visual stimuli. The visual neurons may have demonstrated multisensory properties when stimulated indirectly through neighbouring sensory regions. Our results indicate that primary visual neurons can be evoked by direct or indirect stimulation. The difference in the responses of layer 2/3 and layer 5/6 neurons towards the different adaptation environments indicate that neurons in V1 may behave similar or different towards the different sensory stimulus. This suggests that V1 responses are stimulus dependent. Additionally, the synchronized firing of layer 2/3 and layer 5/6 neurons towards visual adapter signify an existence of functional connectivity between the neuron pairs. Together, it can be summarised that visual neurons undergo an alteration of selectivity by building new orientation maps that ultimately potentiates plasticity within sensory regions that are highly suggestive of entire cortex being multisensory.
8

Eine Symmetrie der visuellen Welt in der Architektur des visuellen Kortex. / A Symmetry of the Visual World in the Architecture of the Visual Cortex.

Schnabel, Michael 18 December 2008 (has links)
No description available.
9

Synthèse de textures dynamiques pour l'étude de la vision en psychophysique et électrophysiologie / Dynamic Textures Synthesis for Probing Vision in Psychophysics and Electrophysiology

Vacher, Jonathan 18 January 2017 (has links)
Le but de cette thèse est de proposer une modélisation mathématique des stimulations visuelles afin d'analyser finement des données expérimentales en psychophysique et en électrophysiologie. Plus précis\'ement, afin de pouvoir exploiter des techniques d'analyse de données issues des statistiques Bayésiennes et de l'apprentissage automatique, il est nécessaire de développer un ensemble de stimulations qui doivent être dynamiques, stochastiques et d'une complexité paramétrée. Il s'agit d'un problème important afin de comprendre la capacité du système visuel à intégrer et discriminer différents stimuli. En particulier, les mesures effectuées à de multiples échelles (neurone, population de neurones, cognition) nous permette d'étudier les sensibilités particulières des neurones, leur organisation fonctionnelle et leur impact sur la prise de décision. Dans ce but, nous proposons un ensemble de contributions théoriques, numériques et expérimentales, organisées autour de trois axes principaux : (1) un modèle de synthèse de textures dynamiques Gaussiennes spécialement paramétrée pour l'étude de la vision; (2) un modèle d'observateur Bayésien rendant compte du biais positif induit par fréquence spatiale sur la perception de la vitesse; (3) l'utilisation de méthodes d'apprentissage automatique pour l'analyse de données obtenues en imagerie optique par colorant potentiométrique et au cours d'enregistrements extra-cellulaires. Ce travail, au carrefour des neurosciences, de la psychophysique et des mathématiques, est le fruit de plusieurs collaborations interdisciplinaires. / The goal of this thesis is to propose a mathematical model of visual stimulations in order to finely analyze experimental data in psychophysics and electrophysiology. More precisely, it is necessary to develop a set of dynamic, stochastic and parametric stimulations in order to exploit data analysis techniques from Bayesian statistics and machine learning. This problem is important to understand the visual system capacity to integrate and discriminate between stimuli. In particular, the measures performed at different scales (neurons, neural population, cognition) allow to study the particular sensitivities of neurons, their functional organization and their impact on decision making. To this purpose, we propose a set of theoretical, numerical and experimental contributions organized around three principal axes: (1) a Gaussian dynamic texture synthesis model specially crafted to probe vision; (2) a Bayesian observer model that accounts for the positive effect of spatial frequency over speed perception; (3) the use of machine learning techniques to analyze voltage sensitive dye optical imaging and extracellular data. This work, at the crossroads of neurosciences, psychophysics and mathematics is the fruit of several interdisciplinary collaborations.

Page generated in 0.5391 seconds