• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'une méthodologie pour la connaissance régionale des crues / Development of a methodology for the regional knowledge of flood hazard

Fouchier, Catherine 18 November 2010 (has links)
Deux volets distincts de l'hydrologie sont abordés, prévision et prédétermination, au travers d'une problématique commune : le transfert à l'exutoire des bassins versants d' une information hydrologique distribuée. Dans le domaine de la prévision des crues, la technologie radar procure une information pluviométrique spatialement continue. Les hydrologues disposent ainsi en temps réel de la connaissance des champs de pluie, atout indéniable pour l'anticipation des crues notamment sur des petits bassins versants par le biais de la modélisation de la pluie en débit. Dans le cadre de la méthode AIGA d'alerte crues, développée au Cemagref, une modélisation mise en oeuvre à l'échelle du pixel de pluie fournit une cartographie des contributions de débit des pixels. Dans le domaine de la prédétermination, le Cemagref a développé la méthode SHYREG qui associe un modèle régionalisé de simulation de pluies horaires à une modélisation de la pluie en débit. Une estimation statistique régionale des pluies et des débits spécifiques de différentes durées, dans une large plage de fréquence (du courant à l'exceptionnel) peut ainsi être proposée et cartographiée. L'objectif du travail présenté est d'étudier et d'élaborer des méthodologies simples de transfert de ces deux informations débitmétriques discrétisées information temps réel pour le volet prévision et information statistique pour le volet prédétermination - à l'information débit à l'exutoire du bassin versant. La méthodologie met en oeuvre des informations spatiales et une modélisation de la pluie en débit. Pour répondre à l'objectif fixé, trois axes de travail sont développés. Le premier est l'étude du comportement d'un modèle pluie-débit simple développé pour être mis en oeuvre à la maille du km². On examine en particulier s'il satisfait les caractéristiques d'invariance et de parcimonie souhaitée pour une utilisation à la fois en reconstitution de crues et en simulation. Le second axe de travail concerne l'agglomération, en prédétermination, de l'information débit statistique connue au km² pour l'estimation des quantiles de débit à l' exutoire de bassins versants de superficie plus importante dans le cadre de la méthode SHYREG. Il s'agit de tenir compte de deux phénomènes hydrologiques distincts : l'abattement spatial de la pluie et le transfert dans le réseau hydraulique. Le troisième axe de travail concerne l'agglomération de l'information hydrologique distribuée pour la reconstitution des crues dans le cadre de l'outil AIGA d'alerte crues. Différentes modélisations sont proposées pour transférer à l'exutoire les contributions des débits modélisées aux pixels. / We address the routing of distributed hydrological information to the outlet of watersheds, in the fields of flood forecasting and flood prediction on ungauged watersheds in the French Mediterranean area.Flood forecasting can benefit of areal rainfall data provided in real-time by radar networks. This data used as an input to rainfall runoff models gives access to flood anticipation on small ungauged watersheds. Within the framework of the AIGA method, developed by CEMAGREF to provide floods alert, a rainfall-runoff model is implemented at the spatial resolution of the radar data, thus providing a map of the 1 km² pixel contributions to the runoff at the catchment outlet.Flood prediction consists of assessing the frequency of occurrence of floods of different given magnitude without reference to the times at which they would occur. The SHYREG flood prediction method, developed by Cemagref associates a regionalized rainfall model with a rainfall-runoff model. It provides grids of statistical estimates of rain and runoff for various duration and return periods. Our purpose is to study and work out simple methodologies to aggregate these two gridded hydrological data - real time information for the AIGA forecasting method and statistical data for the SHYREG prediction method to the catchments outlets. Our methodology implements distributed information and a rainfall-runoff model. We have first studied the behaviour of a simple rainfall-runoff model developed to be implemented in a gridded resolution (1 km² cells) for prediction as well as for forecasting purposes. We have checked that the model parameters show no redundancy and no link with the characteristics of the rainfall events. We have then addressed the question of the aggregation of gridded hydrological data. Within the SHYREG method, it consists of assessing statistical flow estimates at catchments outlets, knowing simulated flow distributions in each cell of the catchments. This aggregation would combine two distinct hydrological phenomena: areal reduction of rainfall and discharge attenuation in the channel network. Within the AIGA method, we have focused on the routing function of the rainfall-runoff model at the 1 km² cell scale, this scale being the first step of the runoff routing from the production area to the outlet of the catchment. We have then produced streamflow hindcasts for selected observed events using different routing function, within our rainfall-runoff model.
2

Développement et évaluation de nouvelles méthodes de classification spatiale-spectrale d’images hyperspectrales / Development and evaluation of new spatial-spectral classification methods of hyperspectral images

Roussel, Guillaume 10 July 2012 (has links)
L'imagerie hyperspectrale, grâce à un nombre élevé de bandes spectrales très fines et contigües, est capable d'associer àchaque pixel d'une image une signature spectrale caractéristique du comportement réflectif du matériau ou du mélange dematériaux présents dans ce pixel. La plupart des algorithmes de classification tirent profit de cette grande profusiond'information spectrale mais exploitent très peu l'information contextuelle existant entre les pixels appartenant à un mêmevoisinage. L'objectif de cette thèse est de réaliser de nouveaux algorithmes utilisant simultanément les informations spectraleet spatiale à des fins de classification et d'étudier la complémentarité de ces deux types d'information dans divers contextes.Dans cette optique nous avons développé trois scénarios de classification sensiblement différents, chacun étant adapté à untype d'application particulier.Nous avons tout d'abord développé un procédé d'extraction puis de classification vectorielle d'un ensemble de caractéristiquesspectrales et spatiales. Les caractéristiques spectrales sont extraites au moyen de méthodes visant à réduire la dimension desimages hyperspectrales tout en conservant une majorité de l'information utile. Les caractéristiques spatiales sont quant àelles produites par l'intermédiaire d'outils de caractérisation de la texture (matrices de co-occurrence et spectres de texture)ou de la forme (profils morphologiques). Nous nous sommes ensuite intéressés à la modélisation markovienne et avonsentrepris d'adapter un algorithme de classification de type Conditional Random Field à un contexte hyperspectral. Notretroisième et dernière approche s'appuie sur une segmentation préalable de l'image afin de réaliser une classification parzones et non plus par pixels.L'information spectrale pure permet de regrouper efficacement des pixels présentant des signatures spectrales similaires etsuffit généralement dans le cadre de problèmes de classification ne faisant intervenir que des classes sémantiquement trèsprécises, liées à un unique type de matériau. Les classes plus générales (utilisées par exemple pour des applicationsd'aménagement des sols) se composent en revanche de plusieurs matériaux parfois communs à plusieurs classes et agencésselon des motifs qui se répètent. Caractérisables à la fois spatialement et spectralement, ces classes sont susceptibles d'êtreplus complètement décrites par une utilisation simultanée de ces deux types d'information. Pour conclure cette étude, nousavons effectué une comparaison des trois méthodes d'intégration de l'information spatiale au processus de classification selonles trois critères sont la précision de classification, la complexité algorithmique et la robustesse / Thanks to a high number of thin and contiguous spectral bands, the hyperpectral imagery can associate to each pixel of animage a spectral signature representing the reflective behaviour of the materials composing the pixel. Most of theclassification algorithms use this great amount of spectral information without noticing the contextual information betweenthe pixels that belong to the same neighborhood. This study aims to realize new algorithms using simultaneously the spectraland spatial informations in order to classify hyperspectral images, and to study their complementarity in several contexts. Forthis purpose, we have developped three different classification scenarios, each one adapted to a particular type of application.The first scenario consists in a vectorial classification processus. Several spectral and spatial characteristics are extracted andmerged in order to form a unique data set, which is classified using a Support Vector Machine method or a Gaussian MixingModel algorithm. The spectral characteristics are extracted using dimension reduction method, such as PCA or MNF, while thespatial characteristics are extracted using textural characterization tools (co-occurrence matrices and texture spectra) ormorphological tools (morphological profiles). For the second scenario, we adapted a Conditional Random Field algorithm tothe hyperspectral context. Finally, the last scenario is an area-wise classification algorithm relying on a textural segmentationmethod as a pre-processing step.The spectral information is generally sufficient to deal with semantically simple classes, linked to a unique type of material.Complex classes (such as ground amenagment classes) are composed of several materials which potentially belong to morethan one class. Those classes can be characterized both spectrally and spatially, which means that they can be morecompletly described using both spectral and spatial informations. To conclude this study, we compared the threespectral/spatial classification scenarios using three criterions : classification accuracy, algorithmic complexity and strength.
3

Fouille de données spatiales et modélisation de linéaires de paysages agricoles / Spatial data mining and modelling of linears in agricultural landscape

Da Silva, Sébastien 11 September 2014 (has links)
Cette thèse s'inscrit dans un partenariat entre l'INRA et l'INRIA et dans le champs de l'extraction de connaissances à partir de bases de données spatiales. La problématique porte sur la caractérisation et la simulation de paysages agricoles. Plus précisément, nous nous concentrons sur des lignes qui structurent le paysage agricole, telles que les routes, les fossés d'irrigation et les haies. Notre objectif est de modéliser les haies en raison de leur rôle dans de nombreux processus écologiques et environnementaux. Nous étudions les moyens de caractériser les structures de haies sur deux paysages agricoles contrastés, l'un situé dans le sud-Est de la France (majoritairement composé de vergers) et le second en Bretagne (Ouest de la France, de type bocage). Nous déterminons également si, et dans quelles circonstances, la répartition spatiale des haies est structurée par la position des éléments linéaires plus pérennes du paysage tels que les routes et les fossés et l'échelle de ces structures. La démarche d'extraction de connaissances à partir de base de données (ECBD) mise en place comporte différentes étapes de prétraitement et de fouille de données, alliant des méthodes mathématiques et informatiques. La première partie du travail de thèse se concentre sur la création d'un indice spatial statistique, fondé sur une notion géométrique de voisinage et permettant la caractérisation des structures de haies. Celui-Ci a permis de décrire les structures de haies dans le paysage et les résultats montrent qu'elles dépendent des éléments plus pérennes à courte distance et que le voisinage des haies est uniforme au-Delà de 150 mètres. En outre différentes structures de voisinage ont été mises en évidence selon les principales orientations de haies dans le sud-Est de la France, mais pas en Bretagne. La seconde partie du travail de thèse a exploré l'intérêt du couplage de méthodes de linéarisation avec des méthodes de Markov. Les méthodes de linéarisation ont été introduites avec l'utilisation d'une variante des courbes de Hilbert : les chemins de Hilbert adaptatifs. Les données spatiales linéaires ainsi construites ont ensuite été traitées avec les méthodes de Markov. Ces dernières ont l'avantage de pouvoir servir à la fois pour l'apprentissage sur les données réelles et pour la génération de données, dans le cadre, par exemple, de la simulation d'un paysage. Les résultats montrent que ces méthodes couplées permettant un apprentissage et une génération automatique qui capte des caractéristiques des différents paysages. Les premières simulations sont encourageantes malgré le besoin d'un post-Traitement. Finalement, ce travail de thèse a permis la création d'une méthode d'exploration de données spatiales basée sur différents outils et prenant en charge toutes les étapes de l'ECBD classique, depuis la sélection des données jusqu'à la visualisation des résultats. De plus, la construction de cette méthode est telle qu'elle peut servir à son tour à la génération de données, volet nécessaire pour la simulation de paysage / This thesis is part of a partnership between INRA and INRIA in the field of knowledge extraction from spatial databases. The study focuses on the characterization and simulation of agricultural landscapes. More specifically, we focus on linears that structure the agricultural landscape, such as roads, irrigation ditches and hedgerows. Our goal is to model the spatial distribution of hedgerows because of their role in many ecological and environmental processes. We more specifically study how to characterize the spatial structure of hedgerows in two contrasting agricultural landscapes, one located in south-Eastern France (mainly composed of orchards) and the second in Brittany (western France, \emph{bocage}-Type). We determine if the spatial distribution of hedgerows is structured by the position of the more perennial linear landscape features, such as roads and ditches, or not. In such a case, we also detect the circumstances under which this spatial distribution is structured and the scale of these structures. The implementation of the process of Knowledge Discovery in Databases (KDD) is comprised of different preprocessing steps and data mining algorithms which combine mathematical and computational methods. The first part of the thesis focuses on the creation of a statistical spatial index, based on a geometric neighborhood concept and allowing the characterization of structures of hedgerows. Spatial index allows to describe the structures of hedgerows in the landscape. The results show that hedgerows depend on more permanent linear elements at short distances, and that their neighborhood is uniform beyond 150 meters. In addition different neighborhood structures have been identified depending on the orientation of hedgerows in the South-East of France but not in Brittany. The second part of the thesis explores the potential of coupling linearization methods with Markov methods. The linearization methods are based on the use of alternative Hilbert curves: Hilbert adaptive paths. The linearized spatial data thus constructed were then treated with Markov methods. These methods have the advantage of being able to serve both for the machine learning and for the generation of new data, for example in the context of the simulation of a landscape. The results show that the combination of these methods for learning and automatic generation of hedgerows captures some characteristics of the different study landscapes. The first simulations are encouraging despite the need for post-Processing. Finally, this work has enabled the creation of a spatial data mining method based on different tools that support all stages of a classic KDD, from the selection of data to the visualization of results. Furthermore, this method was constructed in such a way that it can also be used for data generation, a component necessary for the simulation of landscapes
4

Améliorer la compréhension du cortex visuel à l'aide de techniques de classification

Michel, Vincent 15 December 2010 (has links) (PDF)
Dans ce mémoire, nous présentons différentes méthodes d'apprentissage statistique qui peuvent être utilisées pour comprendre le code neuronal des fonctions cognitives, en se basant sur des données d'Imagerie par Résonance Magnétique fonctionnelle du cerveau. Plus particulièrement, nous nous intéressons à l'´etude de la localisation spatiale des entités impliquées dans le codage, et leur influence respective dans le processus cognitif. Dans cette étude, nous nous focalisons principalement sur l'étude du cortex visuel. Dans la première partie de ce mémoire, nous introduisons les notions d'architecture fonctionnelle cérébrale, de codage neuronal et d'imagerie fonctionnelle. Nous étudions ensuite les limites de l'approche classique d'analyse des données d'IRMf pour l'étude du codage neuronal, et les différents avantages apportées par une méthode d'analyse récente, l'inférence inverse. Enfin, nous détaillons les méthodes d'apprentissage statistique utilisées dans le cadre de l'inférence inverse, et nous les évaluons sur un jeu de données réelles. Cette étude permet de mettre en évidence certaines limitations des approches classiquement utilisées, que cette thèse vise à résoudre. En particulier, nous nous intéressons à l'intégration de l'information sur la structure spatiale des données, au sein d'approches d'apprentissage statistique. Dans la seconde partie de ce mémoire, nous décrivons les trois principales contributions de cette thèse. Tout d'abord, nous introduisons une approche Bayésienne pour la régularisation parcimonieuse, qui généralise au sein d'un même modèle plusieurs approches de références en régularisation Bayésienne. Ensuite nous proposons un algorithme de coalescence supervisé (supervised clustering) qui tient compte de l 'information spatiale contenue dans les images fonctionnelles. Les cartes de poids résultantes sont facilement interprétables, et cette approche semble être bien adaptée au cas de l'inférence entre sujets. La dernière contribution de cette thèse vise à inclure l'information spatiale au sein d'un modèle de régularisation. Cette régularisation peut alors être utilisée dans un cadre de régression et de classification, et permet d'extraire des ensembles connexes de voxels prédictifs. Cette approche est particulièrement bien adaptée à l'étude de la localisation spatiale du codage neuronal, abordée durant cette thèse.
5

Planification et analyse de données spatio-temporelles / Design and analysis of spatio-temporal data

Faye, Papa Abdoulaye 08 December 2015 (has links)
La Modélisation spatio-temporelle permet la prédiction d’une variable régionalisée à des sites non observés du domaine d’étude, basée sur l’observation de cette variable en quelques sites du domaine à différents temps t donnés. Dans cette thèse, l’approche que nous avons proposé consiste à coupler des modèles numériques et statistiques. En effet en privilégiant l’approche bayésienne nous avons combiné les différentes sources d’information : l’information spatiale apportée par les observations, l’information temporelle apportée par la boîte noire ainsi que l’information a priori connue du phénomène. Ce qui permet une meilleure prédiction et une bonne quantification de l’incertitude sur la prédiction. Nous avons aussi proposé un nouveau critère d’optimalité de plans d’expérience incorporant d’une part le contrôle de l’incertitude en chaque point du domaine et d’autre part la valeur espérée du phénomène. / Spatio-temporal modeling allows to make the prediction of a regionalized variable at unobserved points of a given field, based on the observations of this variable at some points of field at different times. In this thesis, we proposed a approach which combine numerical and statistical models. Indeed by using the Bayesian methods we combined the different sources of information : spatial information provided by the observations, temporal information provided by the black-box and the prior information on the phenomenon of interest. This approach allowed us to have a good prediction of the variable of interest and a good quantification of incertitude on this prediction. We also proposed a new method to construct experimental design by establishing a optimality criterion based on the uncertainty and the expected value of the phenomenon.

Page generated in 0.1064 seconds