• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat Transfer and Flow Characteristic Study in a Low Emission Annular Combustor

Sedalor, Teddy 04 June 2010 (has links)
Modern Dry Low Emissions (DLE) combustors are characterized by highly swirling and expanding flows that makes the convective heat load on the combustor liner gas side difficult to predict and estimate. A coupled experimental-numerical study of swirling flow and its effects on combustor liner heat transfer inside a DLE annular combustor model is presented. A simulated scaled up annular combustor shell was designed with a generic fuel nozzle provided by Solar Turbines to create the swirl in the flow. The experiment was simulated with a cold flow and heated walls. An infrared camera was used to obtain the temperature distribution along the liner wall. Experimentally measured pressure distributions were compared with the heat transfer results. The experiment was conducted at various Reynolds Numbers to investigate the effect on the heat transfer peak locations and pressure distributions. A CFD study was performed using Fluent and turbulence models and used to corroborate and verify the experimental results. Results show that the heat transfer enhancement in the annulus has slightly different characteristics for the concave and convex walls. Results also show a much slower drop in heat transfer coefficient enhancement with increasing Reynolds number compared to can combustors from a previous study. An introductory study of the effect of a soft wall on the heat transfer on the combustor liner is also presented. / Master of Science
2

Infrared Imaging Decision Aid Tools for Diagnosis of Necrotizing Enterocolitis

Shi, Yangyu 09 July 2020 (has links)
Neonatal necrotizing enterocolitis (NEC) is one of the most severe digestive tract emergencies in neonates, involving bowel edema, hemorrhage, and necrosis, and can lead to serious complications including death. Since it is difficult to diagnose early, the morbidity and mortality rates are high due to severe complications in later stages of NEC and thus early detection is key to the treatment of NEC. In this thesis, a novel automatic image acquisition and analysis system combining a color and depth (RGB-D) sensor with an infrared (IR) camera is proposed for NEC diagnosis. A design for sensors configuration and a data acquisition process are introduced. A calibration method between the three cameras is described which aims to ensure frames synchronization and observation consistency among the color, depth, and IR images. Subsequently, complete segmentation procedures based on the original color, depth, and IR information are proposed to automatically separate the human body from the background, remove other interfering items, identify feature points on the human body joints, distinguish the human torso and limbs, and extract the abdominal region of interest. Finally, first-order statistical analysis is performed on thermal data collected over the entire extracted abdominal region to compare differences in thermal data distribution between different patient groups. Experimental validation in a real clinical environment is reported and shows encouraging results.
3

Heat Transfer and Flow Measurements on a One-Scale Gas Turbine Can Combustor Model

Abraham, Santosh 05 November 2008 (has links)
Combustion designers have considered back-side impingement cooling as the solution for modern DLE combustors. The idea is to provide more cooling to the deserved local hot spots and reserve unnecessary coolant air from local cold spots. Therefore, if accurate heat load distribution on the liners can be obtained, then an intelligent cooling system can be designed to focus more on the localized hot spots. The goal of this study is to determine the heat transfer and pressure distribution inside a typical can-annular gas turbine combustor. This is one of the first efforts in the public domain to investigate the convective heat load to combustor liner due to swirling flow generated by swirler nozzles. An experimental combustor test model was designed and fitted with a swirler nozzle provided by Solar Turbines Inc. Heat transfer and pressure distribution measurements were carried out along the combustor wall to determine the thermo-fluid dynamic effects inside a combustor. The temperature and heat transfer profile along the length of the combustor liner were determined and a heat transfer peak region was established. Constant-heat-flux boundary condition was established using two identical surface heaters, and the Infrared Thermal Imaging system was used to capture the real-time steady-state temperature distribution at the combustor liner wall. Analysis on the flow characteristics was also performed to compare the pressure distributions with the heat transfer results. The experiment was conducted at two different Reynolds numbers (Re 50,000 and Re 80,000), to investigate the effect of Reynolds Number on the heat transfer peak locations and pressure distributions. The results reveal that the heat transfer peak regions at both the Reynolds numbers occur at approximately the same location. The results from this study on a broader scale will help in understanding and predicting swirling flow effects on the local convective heat load to the combustor liner, thereby enabling the combustion engineer to design more effective cooling systems to improve combustor durability and performance. / Master of Science
4

Heat Transfer and Flow Measurements in Gas Turbine Engine Can and Annular Combustors

Carmack, Andrew Cardin 31 May 2012 (has links)
A comparison study between axial and radial swirler performance in a gas turbine can combustor was conducted by investigating the correlation between combustor flow field geometry and convective heat transfer at cold flow conditions for Reynolds numbers of 50,000 and 80,000. Flow velocities were measured using Particle Image Velocimetry (PIV) along the center axial plane and radial cross sections of the flow. It was observed that both swirlers produced a strong rotating flow with a reverse flow core. The axial swirler induced larger recirculation zones at both the backside wall and the central area as the flow exits the swirler, and created a much more uniform rotational velocity distribution. The radial swirler however, produced greater rotational velocity as well as a thicker and higher velocity reverse flow core. Wall heat transfer and temperature measurements were also taken. Peak heat transfer regions directly correspond to the location of the flow as it exits each swirler and impinges on the combustor liner wall. Convective heat transfer was also measured along the liner wall of a gas turbine annular combustor fitted with radial swirlers for Reynolds numbers 210000, 420000, and 840000. The impingement location of the flow exiting from the radial swirler resulted in peak heat transfer regions along the concave wall of the annular combustor. The convex side showed peak heat transfer regions above and below the impingement area. This behavior is due to the recirculation zones caused by the interaction between the swirlers inside the annulus. / Master of Science
5

Implementation of Infrared Non-Destructive Evaluation in Fiber-Reinforced Polymer Bouble-Web I-Beams

Mehl, Nicholas 27 February 2006 (has links)
When taking steps away from tried and true designs, there is always a degree of uncertainty that arises. With the introduction of fiber-reinforced polymers (FRP) in double-web I-beams (DWIB) to replace steel beams in bridge applications, there are many benefits along with the disadvantages. A bridge has been built with this new type of beam after only short-term proof testing for validation. Nondestructive evaluation (NDE) is a way to implement health monitoring of the bridge beams and needs to be assessed. The principal underlying infrared thermal imaging (IR) nondestructive evaluation (NDE) is to induce a thermal gradient in the beam through heating and monitor how it changes. Delaminations determined by others to be the critical form of deterioration, would be expected to affect the heat conduction in these beams. This project used a halogen lamp to heat the surface of the beam followed by an observation with an IR camera. Calculations of an ANSYS finite element analysis (FEA) model were compared with a series of laboratory tests. The experimental results allowed for validation of the model and development of an IR inspection procedure. This work suggests that for high quality beams of the type considered that an IR procedure could be developed to detect delaminations as small as one inch in length; however, the size would be underestimated. / Master of Science
6

Evaluation of implement monitoring systems

Rakhra, Aadesh 25 September 2012 (has links)
During monitoring of rear-mounted equipment, frequent rearward turning of tractor drivers in awkward postures can cause musculoskeletal disorders related to the back, neck, and shoulders. A camera-based monitoring system, consisting of one or more cameras placed on the implement and a monitor placed inside the tractor cab, has potential ergonomic benefits compared with traditional implement monitoring strategies by reducing the rearward turning and twisting movements of tractor drivers. A camera-based monitoring system was compared with two traditional monitoring strategies (direct looking and using rear-view mirrors) in a lab environment using a Tractor Air-Seeder Driving Simulator. The operator’s reaction time and response errors, head/neck movement (acceleration), and neck muscle temperature were compared for the three monitoring strategies. The camera-based monitoring system yielded significantly (α=0.05) better outcomes in terms of acceleration and muscle temperature values. No significant difference was observed for response errors.
7

Evaluation of implement monitoring systems

Rakhra, Aadesh 25 September 2012 (has links)
During monitoring of rear-mounted equipment, frequent rearward turning of tractor drivers in awkward postures can cause musculoskeletal disorders related to the back, neck, and shoulders. A camera-based monitoring system, consisting of one or more cameras placed on the implement and a monitor placed inside the tractor cab, has potential ergonomic benefits compared with traditional implement monitoring strategies by reducing the rearward turning and twisting movements of tractor drivers. A camera-based monitoring system was compared with two traditional monitoring strategies (direct looking and using rear-view mirrors) in a lab environment using a Tractor Air-Seeder Driving Simulator. The operator’s reaction time and response errors, head/neck movement (acceleration), and neck muscle temperature were compared for the three monitoring strategies. The camera-based monitoring system yielded significantly (α=0.05) better outcomes in terms of acceleration and muscle temperature values. No significant difference was observed for response errors.
8

Caractérisation, Evaluation, mMdélisation des échanges entre aquifères karstiques et rivières : application à la Cèze (Gard, France) / CHARACTERIZATION, ASSESSMENT, MODELING OF EXCHANGES BETWEEN KARSTIC AQUIFERS AND RIVERS – APPLICATION TO THE RIVER CÈZE (GARD, FRANCE)

Chapuis, Hervé 12 October 2017 (has links)
Ce travail s’inscrit dans un projet de recherche interdisciplinaire (Zone Atelier Bassin du Rhône – Agence de l’Eau Rhône Méditerranée Corse) portant sur la rivière Cèze, affluent du Rhône.Le terrain d’expérimentation se situe dans les formations karstiques du bassin de la Cèze (Gard, France). Cette zone touristique est exposée à une croissance démographique et de l’activité agricole, engendrant une augmentation de la demande en eau. La thèse se concentre sur la restitution des eaux karstiques à la rivière en période estivale pour en comprendre le fonctionnement de l’hydrosystème en période de basses eaux, quand la ressource est vulnérable.Ce travail a permis d’élaborer une méthodologie, pour analyser et quantifier les échanges entre la rivière et l’aquifère karstique, fondée sur : la géologie, l’hydrologie, la géochimie, la biologie, la radioactivité en radon, l’analyse d’images infrarouges thermiques et la modélisation. Les résultats obtenus avec ces approches sont confrontés pour interpréter les interactions karst/rivière d’un point de vue qualitatif et/ou quantitatif (localisation, périodicité, débits). La confrontation de ces résultats met en avant l’intérêt d’une méthodologie interdisciplinaire pour interpréter et quantifier les échanges karst/rivière. L’application de la méthode montre qu’en juin 2015, la Cèze est alimentée à 50 % par des eaux karstiques.L’analyse multi-métrique du système karstique a permis d’acquérir de nouvelles connaissances sur son fonctionnement nécessaires pour paramétrer le modèle par réseaux de neurones qui constitue la dernière étape de ce travail. / This work is part of an interdisciplinary research project (Rhone Basin Workshop Zone – the Rhone-Mediterranean and Corsica Water Agency) on the river Cèze, a tributary of the Rhône.The experimental field is located in the karstic formations of the Cèze basin (Gard, France). This tourist area is exposed to population growth and agricultural activity, causing an increase in water demand. The thesis focuses on the karstic water restitution to the river during summer, in order to understand the functioning of the hydrosystem in periods of low water levels, when the resource is vulnerable.This work led to the development of a methodology to analyze and quantify the exchanges between karstic aquifers and rivers. This methodology is based on geology, hydrology, geochemistry, biology, radon radioactivity, infrared thermal imaging analysis and modeling. The results obtained with these approaches are compared in order to understand the karst/river interactions from a qualitative and/or quantitative point of view (localization, frequency, flow rates). The comparison of these results highlights the advantages of an interdisciplinary methodology for understanding and quantifying the karst/river exchanges. The application of this method shows that in June 2015, 50 % of the river Cèze was fed by karstic waters.The multi-metric analysis of the karstic system has led to new knowledge about its functioning. This knowledge is necessary to set the model’s parameters using neural networks, which is the last stage of this work.
9

A Novel Access Technology Based on Infrared Thermography for People with Severe Motor Impairments

Memarian, Negar 18 February 2011 (has links)
Many individuals with severe motor impairments are cognitively capable, but because of their physical impairments, unable to express their intention through conventional means of communication. Access technologies are devices that attempt to translate the intention of these individuals into functional activity by harnessing their residual physical or physiological abilities. The primary objective of this thesis was to design and develop a novel non-invasive and non-contact access technology based on infrared thermal imaging. This access technology translates the local temperature change associated with voluntary mouth opening to activation of a binary switch such as a mouse click or key press. To this end, an algorithm based on motion and temperature analyses, and morphological and anthropometric filters was designed to detect mouth opening activity in thermal video in real-time. The secondary objective of this thesis was to introduce a mutual information measure for objective assessment of binary switch users’ performance. A model was suggested, in which combination of cognitive and physical abilities of the human user of a binary access switch constitute a communication channel. The proposed mutual information measure estimates the rate of information transmission in the ‘human communication channel’ during stimulus response tasks. Using this measure, in a study with ten able-bodied participants, the infrared thermal switch was validated against a conventional chin switch. Impairments in body functions and structures that may contraindicate the use of the infrared thermal switch were explored in a study with seven clients, with severe disabilities. Potential hard and soft technological solutions to mitigate the effect of these impairments on infrared thermal switch use were recommended. Finally the infrared thermal switch was tailored to meet the needs of a young man with severe spastic quadriplegic cerebral palsy, who had no other means of physical access.
10

A Novel Access Technology Based on Infrared Thermography for People with Severe Motor Impairments

Memarian, Negar 18 February 2011 (has links)
Many individuals with severe motor impairments are cognitively capable, but because of their physical impairments, unable to express their intention through conventional means of communication. Access technologies are devices that attempt to translate the intention of these individuals into functional activity by harnessing their residual physical or physiological abilities. The primary objective of this thesis was to design and develop a novel non-invasive and non-contact access technology based on infrared thermal imaging. This access technology translates the local temperature change associated with voluntary mouth opening to activation of a binary switch such as a mouse click or key press. To this end, an algorithm based on motion and temperature analyses, and morphological and anthropometric filters was designed to detect mouth opening activity in thermal video in real-time. The secondary objective of this thesis was to introduce a mutual information measure for objective assessment of binary switch users’ performance. A model was suggested, in which combination of cognitive and physical abilities of the human user of a binary access switch constitute a communication channel. The proposed mutual information measure estimates the rate of information transmission in the ‘human communication channel’ during stimulus response tasks. Using this measure, in a study with ten able-bodied participants, the infrared thermal switch was validated against a conventional chin switch. Impairments in body functions and structures that may contraindicate the use of the infrared thermal switch were explored in a study with seven clients, with severe disabilities. Potential hard and soft technological solutions to mitigate the effect of these impairments on infrared thermal switch use were recommended. Finally the infrared thermal switch was tailored to meet the needs of a young man with severe spastic quadriplegic cerebral palsy, who had no other means of physical access.

Page generated in 0.0759 seconds