Spelling suggestions: "subject:"infrarotemission"" "subject:"infrarotemissionen""
1 |
Interbandkaskadenlaser für die Gassensorik im Spektralbereich des mittleren Infrarot / Interband Cascade Lasers for Gas Sensing in the Mid Infrared Spectral RegionWeih, Robert January 2018 (has links) (PDF)
Aufgrund der hohen Sensitivität bei der Absorptionsmessung von Gasen im Spektral-
bereich des mittleren Infrarot steigt die Nachfrage nach monolithischen, kompakten
und energieeffizienten Laserquellen in Wellenlängenfenster zwischen 3 und 6 μm ste-
tig. In diesem Bereich liegen zahlreiche Absorptionsbanden von Gasen, welche sowohl
in der Industrie als auch in der Medizintechnik von Relevanz sind. Mittels herkömm-
licher Diodenlaser konnte dieser Bereich bisher nur unzureichend abgedeckt werden,
während Quantenkaskadenlaser infolge ihrer hohen Schwellenleistungen vor allem
für portable Anwendungen nur bedingt geeignet sind. Interbandkaskadenlaser kom-
binieren die Vorteile des Interbandübergangs von konventionellen Diodenlasern mit
der Möglichkeit zur Kaskadierung der Quantenkaskadenlaser und können einen sehr
breiten Spektralbereich abdecken.
Das übergeordnete Ziel der Arbeit war die Optimierung von molekularstrahlepitak-
tisch hergestellten Interbandkaskadenlasern auf GaSb - Basis im Spektralbereich des
mittleren Infrarot für den Einsatz in der Gassensorik. Dies impliziert die Ermögli-
chung von Dauerstrichbetrieb bei Raumtemperatur, das Erreichen möglichst geringer
Schwellenleistungen sowie die Entwicklung eines flexiblen Konzepts zur Selektion von
nur einer longitudinalen Mode.
Da die Qualität der gewachsenen Schichten die Grundvoraussetzung für die Herstel-
lung von performanten Bauteilen darstellt, wurde diese im Rahmen verschiedener
Wachstumsserien eingehend untersucht. Nachdem das Flussverhältnis zwischen den
Gruppe -V Elementen Sb und As ermittelt werden konnte, bei dem die InAs/AlSb -
Übergitter der Mantelschichten verspannungskompensiert hergestellt werden können,
wurde die optimale Substrattemperatur beim Wachstum dieser zu 450 ◦C bestimmt.
Anhand von PL - sowie HRXRD- Messungen an Testproben konnte auch die opti-
male Substrattemperatur beim Wachstum der charakteristischen W- Quantenfilme
zu 450 ◦C festgelegt werden. Als weiterer kritischer Parameter konnte der As - Fluss
beim Wachstum der darin enthaltenen InAs - Schichten identifiziert werden. Die bes-
ten Ergebnisse wurden dabei mit einem As - Fluss von (1.2 ± 0.2) × 10−6 torr erzielt.
Darüber hinaus konnte in Kooperation mit der Technischen Universität Breslau eine sehr hohe guteWachstumshomogenität auf den verwendeten 2′′ großen GaSb -Wafern
nachgewiesen werden.
Im Anschluss an die Optimierung des Wachstums verschiedener funktioneller Be-
standteile wurden basierend auf einem in der Literatur veröffentlichten Laserschicht-
aufbau diverse Variationen mit dem Ziel der Optimierung der Laserkenndaten unter-
sucht. Zum Vergleich wurden 2.0 mm lange und 150 μm breite, durch die aktive Zone
geätzte Breitstreifenlaser herangezogen.
Eine erhebliche Verbesserung der Kenndaten konnte durch die Anwendung des Kon-
zepts des Ladungsträgerausgleichs in der aktiven Zone erreicht werden. Bei einer
Si - Dotierkonzentration von 5.0 × 1018 cm−3 in den inneren vier InAs - Filmen des
Elektroneninjektors konnte die niedrigste Schwellenleistungsdichte von 491W/cm2
erreicht werden, was einer Verbesserung von 59% gegenüber des Referenzlasers ent-
spricht. Mithilfe längenabhängiger Messungen konnte gezeigt werden, dass der Grund
für die Verbesserung in der deutlichen Reduzierung der internen Verluste auf nur
11.3 cm−1 liegt. Weiterhin wurde die Abhängigkeit der Laserkenngrößen von der
Anzahl der verwendeten Kaskaden in den Grenzen von 1 bis 12 untersucht. Wie
das Konzept der Kaskadierung von Quantenfilmen erwarten ließ, wurde eine mo-
notone Steigerung des Anstiegs der Strom - Lichtleistungskennlinie sowie eine Pro-
portionalität zwischen der Einsatzspannung und der Kaskadenzahl nachgewiesen.
Für ICLs mit einer gegebenen Wellenleiterkonfiguration und einer Wellenlänge um
3.6 μm wurde bei einer Temperatur von 20 ◦C mit 326W/cm2 die niedrigste Schwel-
lenleistungsdichte bei einem ICL mit vier Kaskaden erreicht. Des Weiteren konnte
für einen ICL mit 10 Kaskaden und einer Schwellenstromdichte von unter 100A/cm2
ein Bestwert für Halbleiterlaser in diesem Wellenlängenbereich aufgestellt werden.
Eine weitere Reduktion der Schwellenleistungsdichte um 24% konnte anhand von
Lasern mit fünf Kaskaden durch die Reduktion der Te - Dotierung von 3 × 1017 cm−3
auf 4 × 1016 cm−3 im inneren Teil der SCLs erreicht werden. Auch hier wurde mit-
tels längenabhängiger Messungen eine deutliche Reduktion der internen Verluste
nachgewiesen. In einer weiteren Untersuchung wurde der Einfluss der SCL - Dicke
auf die spektralen sowie elektro - optischen Eigenschaften untersucht. Darüber hin-
aus konnten ICLs realisiert werden, deren Mantelschichten nicht aus kurzperiodigen
InAs/AlSb - Übergittern sondern aus quaternärem Al0.85Ga0.15As0.07Sb0.93 bestehen.
Für einen derartig hergestellten ICL konnte eine Schwellenstromdichte von 220A/cm2
bei einer Wellenlänge von 3.4 μm gezeigt werden.
Mithilfe der durch die verschiedenen Optimierungen gewonnenen Erkenntnisse so-
wie Entwurfskriterien aus der Literatur wurden im Rahmen diverser internationaler Kooperationsprojekte ICLs bei verschiedenen Wellenlängen zwischen 2.8 und 5.7 μm
hergestellt. Der Vergleich der Kenndaten zeigt einen eindeutigen Trend zu einer stei-
genden Schwellenstromdichte mit steigender Wellenlänge. Die charakteristische Tem-
peratur der untersuchten Breitstreifenlaser nimmt von circa 65K bei lambda=3.0 μm mit
steigender Wellenlänge auf ein Minimum von 35K im Wellenlängenbereich um 4.5 μm
ab und steigt mit weiter steigender Wellenlänge wieder auf 45K an. Ein möglicher
Grund für dieses Verhalten konnte mithilfe von Simulationen in der Anordnung der
Valenzbänder im W-Quantenfilm gefunden werden.
Zur Untersuchung der Tauglichkeit der epitaktisch hergestellten Schichten für den in
der Anwendung hilfreichen Dauerstrichbetrieb oberhalb von Raumtemperatur wur-
den Laser in Stegwellenleitergeometrie mit einer aufgalvanisierten Goldschicht zur
verbesserten Wärmeabfuhr hergestellt. Nach dem Aufbau der Laser auf Wärmesen-
ken wurde der Einfluss der Kavitätslänge sowie der Stegbreite auf diverse Kennda-
ten untersucht. Des Weiteren wurden eine Gleichung verifiziert, welche es erlaubt
die maximal erreichbare Betriebstemperatur im Dauerstrichbetrieb aus der auf die
Schwellenleistung bezogenen charakteristischen Temperatur sowie dem thermischen
Widerstand des Bauteils zu berechnen. Mithilfe von optimierten Bauteilen konn-
ten Betriebstemperaturen von mehr als 90 ◦C und Ausgangsleistungen von mehr als
100mW bei einer Betriebstemperatur von 20 ◦C erreicht werden.
Im Hinblick auf die Anwendung der Laser in der Absorptionsspektroskopie wurde ab-
schließend ein DFB-Konzept, welches zuvor bereits in konventionellen Diodenlasern
zur Anwendung kam, erfolgreich auf das ICL - Material übertragen. Dabei kommt
ein periodisches Metallgitter zum Einsatz, welches seitlich der geätzten Stege aufge-
bracht wird und aufgrund von Verlustkopplung eine longitudinale Mode bevorzugt.
Durch den Einsatz von unterschiedlichen Gitterperioden konnten monomodige ICLs
basierend auf dem selben Epitaxiematerial in einem spektralen Bereich von mehr als
100nm hergestellt werden. Ein 2.4mm langer DFB- Laser konnte einen Abstimmbe-
reich von mehr als 10nm bei Verschiebungsraten von 0.310nm/K und 0.065nm/mA
abdecken. Der DFB- ICL zeigte im Dauerstrichbetrieb in einem Temperaturbereich
zwischen 10 und 35 ◦C monomodigen Betrieb mit einer Ausgangsleistung von mehre-
ren mW. Basierend auf dem in dieser Arbeit gewachsenem Material und dem DFB-
Konzept konnte im Rahmen verschiedener Entwicklungsprojekte bereits erfolgreich
Absorptionsspektroskopie in einem breiten Spektralbereich des mittleren Infrarot be-
trieben werden. / Due to the high sensitivity regarding absorption spectroscopy in the mid infrared spectral range the demand for monolithic, compact and energy efficient laser sourcesin the wavelength window between 3 and 6 μm is steadily increasing. Numerous absorption bands of gases relevant in industrial and medical applications are situated in this window. Utilizing conventional diode lasers this range could not be sufficiently covered, whereas quantum cascade lasers are of limited suitability for portable applications due to their high threshold power. Interband cascade lasers combine the advantage of interband transitions with the possibility of cascading from quantum cascade lasers and can cover a very wide spectral range.
The main objective of this work was the optimization of molecular epitaxially grown mid infrared interband cascade lasers based on GaSb substrates for their utilization in gas sensing. This implies the realization of continuous wave operation at room temperature, to achieve as low threshold powers as possible and also the development of a flexible concept that realizes the selection of a single longitudinal mode.
Since the quality of epitaxially grown layers is of high importance for the fabrication of high performance devices it was investigated and optimized in various growth series. After the flux ratio between the group -V elements Sb and As, that enables strain compensation in InAs/AlSb superlattices, was found the optimal substrate temperature during growth of these was determined to 450 °C. Using PL - as well as HRXRD- measurements of test samples the optimal substrate temperature during growth of the characteristic W- quantum wells was also set to 450 ◦C. The As - flux during the growth of the InAs layers inside these wells could be identified as a critical parameter as well. The best results could be achieved at an As - flux of (1.2 ± 0.2) × 10−6 torr. Moreover a very high growth homogeneity on the GaSb wafers of 2′′ size could be verified in cooperation with the Wrocław University of Science and Technology.
Subsequently to the growth optimizations of the different functional groups of the laser structure various variations based on a published laser design were investigated in order to optimize the laser characteristics. To compare the results 2.0mm long and 150 μm wide broad area lasers were processed and characterized.
A significant improvement of the laser characteristics could be achieved due to the implementation of the carrier rebalancing concept inside the active region. A Si -doping concentration of 5.0 × 1018 cm−3 in the inner four InAs - layers of the electron injector lead to a threshold power density as low as 491 W/cm2. This equals a 59% reduction from the value of the reference structure. By conducting cavity length dependent measurements the reason for this improvement could be found in the reduction of the internal losses to a value of only 11.3 cm−1. Furthermore the dependence of different characteristic variables on the number of cascades inside the active region was investigated within the limits of 1 to 12 cascades. As expected from the concept of cascading a monotonic increase of the slope of the current - output power characteristic with the number of cascades and a proportionality between set in voltage and the number of cascades was found. For ICLs with a given waveguide configuration and a wavelength of 3.6 μm the lowest threshold power density of 326 W/cm2 at a temperature of 20 °C was achieved for a four stage ICL. Beyond that a threshold current density of less than 100 A/cm2 could be found for a device with 10 cascades - a record for semiconductor lasers in this wavelength range. Additionally a reduction of the threshold power density in five stage ICLs of 24% could be achieved with the reduction of the doping density in the inner part of the separate confinement layers from 3 × 1017 cm−3 to 4 × 1016 cm−3. The reason for this was also found in a significant reduction of the internal loss. In a further test series the influence of the separate confinement layer - thickness on the spectral and electro - optic properties was investigated. Additionally ICLs were realized with cladding layers made of quaternary Al0.85Ga0.15As0.07Sb0.93 instead of InAs/AlSb - superlattices. For an ICL of this kind a threshold current density of 220 A/cm2 at a wavelength of 3.4 μm could be reached.
Based on the before mentioned improvements and design rules from literature several ICLs in the wavelength window between 2.8 and 5.7 μm were fabricated in the framework of different international projects. Comparing these results a clear trend towards an increase in threshold current density with increasing wavelength was found. The characteristic temperature of the processed broad area lasers decreases from 65 K at λ = 3.0 μm to a minimum of 35K in the wavelength region around 4.5 μm and increases again for ICLs with even longer wavelengths. A possible reason for this was found in the arrangement of the valence bands in the W-quantum well.
To investigate the capability of continuous wave operation above room temperature, which brings a clear benefit in applications, ridge waveguide lasers with a thick electroplated gold layer for improved heat dissipation were processed. After mounting the lasers on heat sinks the influence of the device length and width on several characteristics was determined. Furthermore an equation was verified which allows predicting the maximum operation temperature in continuous wave operation from the threshold power based characteristic temperature and the thermal resistance of a laser device. Optimized devices could reach a maximum operation temperature in continuous wave mode of more than 90 ◦C and an output power of more than 100 mW at an operation temperature of 20 ◦C.
With regard to the application in absorption spectroscopy a DFB concept, which has already been demonstrated in conventional diode lasers, could be successfully adapted for ICLs. The concept is based on a metal grating that is placed on the side of the laser ridge and favours one longitudinal mode due to loss coupling. By utilizing different grating periods single mode ICLs based on the same epitaxial material could be fabricated in a spectral range of more than 100 nm width. A 2.4 mm long DFB - laser could cover a tuning range of more than 10nm with temperature and current tuning rates of 0.310 nm/K and 0.065 nm/mA respectively. The DFB- ICL device showed single mode operation in a temperature range from 10 to 35 °C with an output power of several mW. Based on the epitaxial material grown in this work and the DFB- concept a variety of absorption spectroscopy experiments in the framework of several projects could be carried out in a wide range of the mid infrared spectral region.
|
2 |
Detektion von infraroter Strahlung zur Beurteilung der Materialqualität von Solar-SiliziumSchubert, Martin C. January 2008 (has links)
Konstanz, Univ., Diss., 2008. / Aus: Ersch. auch im Verl. Dr. Hut (http://www.dr.hut-verlag.de), ISBN 978-3-89963-780-9.
|
Page generated in 0.0788 seconds