• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 3
  • Tagged with
  • 15
  • 15
  • 13
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling and verification of functional and non functional requirements of ambient, self adaptative systems / Modélisation et vérification des exigences fonctionnelles et non fonctionnelles des systèmes ambiants auto-adaptatifs

Ahmad, Manzoor 07 October 2013 (has links)
Le contexte de ce travail de recherche se situe dans le domaine du génie logiciel, et vise plus spécifiquement les systèmes auto-adaptatifs (Self Adaptive Systems, SAS). Le travail de recherche vise les tous premiers stades du cycle de vie du développement logiciel : la phase de spécification des exigences (Requirements Engineering). Nous nous concentrons sur la définition et la modélisation des exigences (Elicitation) ainsi que sur leur vérification. La contribution globale de cette thèse est de proposer une approche intégrée pour la modélisation et la vérification des exigences des SAS à l'aide de techniques d'ingénierie des modèles (Model Driven Engineering, MDE). Nous prenons les exigences en entrée de notre processus et les divisons en exigences fonctionnelles et non fonctionnelles. Ensuite, nous appliquons un processus pour identifier les exigences qui sont adaptables et celles qui sont invariantes. Les progrès récents dans les techniques basées sur les buts en Ingénierie des Exigences nous ont poussé à intégrer ces techniques dans notre approche. En (Goal Oriented Requirements Engineering, GORE), les (Non Functional Requirements, NFR) sont exprimées sous la forme de buts, ce qui est beaucoup plus riche et complet dans la définition des relations entre les exigences. Ici, les exigences invariantes sont capturées par le concept de buts fonctionnels et les exigences adaptables sont capturées par le concept des buts non fonctionnels. Nous avons identifié quelques problèmes dans les méthodes classiques de modélisation des exigences et la vérification des propriétés. Ces approches ne tiennent pas compte des caractéristiques d'adaptabilité associées avec les systèmes auto-adaptatifs. Afin de valider notre approche, nous avons modélisé les exigences de deux études de cas et vérifié les exigences d'une étude de cas. / The overall contribution of this thesis is to propose an integrated approach for modeling and verifying the requirements of Self Adaptive Systems using Model Driven Engineering techniques. Model Driven Engineering is primarily concerned with reducing the gap between problem and software implementation domains through the use of technologies that support systematic transformation of problem level abstractions to software implementations. By using these techniques, we have bridged this gap through the use of models that describe complex systems at multiple levels of abstraction and through automated support for transforming and analyzing these models. We take requirements as input and divide it into Functional and Non Functional Requirements. We then use a process to identify those requirements that are adaptable and those that cannot be changed. We then introduce the concepts of Goal Oriented Requirements Engineering for modeling the requirements of Self Adaptive Systems, where Non Functional Requirements are expressed in the form of goals which is much more rich and complete in defining relations between requirements. We have identified some problems in the conventional methods of requirements modeling and properties verification using existing techniques, which do not take into account the adaptability features associated with Self Adaptive Systems. Our proposed approach takes into account these adaptable requirements and we provide various tools and processes that we developed for the requirements modeling and verification of Self Adaptive Systems. We validate our proposed approach by applying it on two different case studies in the domain of Self Adaptive Systems.
12

Kevoree : Model@Runtime pour le développement continu de systèmes adaptatifs distribués hétérogènes / Model@Runtime for continuous development of heterogeneous distributed adaptive systems

Fouquet, François 06 March 2013 (has links)
La complexité croissante des systèmes d'information modernes a motivé l'apparition de nouveaux paradigmes (objets, composants, services, etc), permettant de mieux appréhender et maîtriser la masse critique de leurs fonctionnalités. Ces systèmes sont construits de façon modulaire et adaptable afin de minimiser les temps d'arrêts dus aux évolutions ou à la maintenance de ceux-ci. Afin de garantir des propriétés non fonctionnelles (par ex. maintien du temps de réponse malgré un nombre croissant de requêtes), ces systèmes sont également amenés à être distribués sur différentes ressources de calcul (grilles). Outre l'apport en puissance de calcul, la distribution peut également intervenir pour distribuer une tâche sur des nœuds aux propriétés spécifiques. C'est le cas dans le cas des terminaux mobiles proches des utilisateurs ou encore des objets et capteurs connectés proches physiquement du contexte de mesure. L'adaptation d'un système et de ses ressources nécessite cependant une connaissance de son état courant afin d'adapter son architecture et sa topologie aux nouveaux besoins. Un nouvel état doit ensuite être propagé à l'ensemble des nœuds de calcul. Le maintien de la cohérence et le partage de cet état est rendu particulièrement difficile à cause des connexions sporadiques inhérentes à la distribution, pouvant amener des sous-systèmes à diverger. En réponse à ces défi scientifiques, cette thèse propose une abstraction de conception et de déploiement pour systèmes distribués dynamiquement adaptables, grâce au principe du Model@Runtime. Cette approche propose la construction d'une couche de réflexion distribuée qui permet la manipulation abstraite de systèmes répartis sur des nœuds hétérogènes. En outre, cette contribution introduit dans la modélisation des systèmes adaptables la notion de cohérence variable, permettant ainsi de capturer la divergence des nœuds de calcul dans leur propre conception. Cette couche de réflexion, désormais cohérente "à terme", permet d'envisager la construction de systèmes adaptatifs hétérogènes, regroupant des nœuds mobiles et embarqués dont la connectivité peut être intermittente. Cette contribution a été concrétisée par un projet nommé ''Kevoree'' dont la validation démontre l'applicabilité de l'approche proposée pour des cas d'usages aussi hétérogènes qu'un réseau de capteurs ou une flotte de terminaux mobiles. / The growing complexity of modern IT systems has motivated the development of new paradigms (objects, components, services,...) to better cope with the critical size of their functionalities. Such systems are then built as a modular and dynamically adaptable compositions, allowing them to minimise their down-times while performing evolutions or fixes. In order to ensure non-functional properties (i.e. request latency) such systems are distributed across different computation nodes. Besides the added value in term of computational power (cloud), this distribution can also target nodes with dedicated properties such as mobile nodes and sensors (internet of things), physically close to users for interactions. Adapting a system requires knowledge about its current state in order to adapt its architecture to its evolving needs. A new state must be then disseminated to other nodes to synchronise them. Maintaining its consistency and sharing this state is a difficult task especially in case of sporadic connexions which lead to divergent state between sub-systems. To tackle these scientific problems, this thesis proposes an abstraction to design and deploy distributed adaptive systems following the Model@Runtime paradigm. From this abstraction, the proposed approach allows defining a distributed reflexive layer to manipulate heterogeneous distributed nodes. In particular, this contribution introduces variable consistencies in model definition and divergence in system conception. This reflexive layer, eventually consistent allows the construction of distributed adapted systems even on mobile nodes with intermittent connectivity. This work has been realized in an open source project named Kevoree, and validated on various distributed systems ranging from sensor networks to “cloud” computing.
13

Taming Complexity of Large Software Systems: Contracting, Self-Adaptation and Feature Modeling

Collet, Philippe 06 December 2011 (has links) (PDF)
Nos travaux s'inscrivent dans le domaine du génie logiciel pour les systèmes informatiques à large échelle. Notre objectif est de fournir des techniques et des outils pour aider les architectes logiciels à maîtriser la complexité toujours grandissante de ces systèmes. Principalement fondées sur des approches par ingénierie des modèles, nos contributions s'organisent autour de trois axes. Le premier axe concerne le développement de systèmes à la fois fiables et flexibles, et ce à base de composants hiérarchiques équipés de capacités de reconfiguration dynamique. Par l'utilisation de nouvelles formes de contrats logiciels, les systèmes et frameworks que nous proposons prennent en compte differents formalismes de spécification et maintiennent les contrats à jour pendant l'exécution. Une seconde partie de nos travaux s'intéresse à fournir des capacités auto-adaptatives à ces systèmes contractuels, à travers des mécanismes de négociation de contrats et des sous-systèmes de monitoring eux-mêmes auto-adaptatifs. Un troisième axe concerne les lignes de produits logiciels dans lesquelles les features models sont largement utilisés pour modéliser la variabilité. Nos contributions consistent en un ensemble d'opérateurs de composition bien définis et implémentés efficacement pour les feature models, ainsi qu'un langage dédié permettant leur gestion à large échelle.
14

EnTiMid : Un modèle de composants pour intégrer des objets communicants dans des applications à base de services

Nain, Grégory 05 December 2011 (has links) (PDF)
Les systèmes logiciels tendent à se doter de facultés d'adaptation, d'évolution et d'ouverture. Ces capacités requièrent une grande flexibilité et dynamicité de l'environnement d'exécution, ainsi que de nouveaux outils d'assistance à la fabrication de ces systèmes. En électronique, des outils ont été déployés pour faire face à l'hétérogénéité et au nombre de composants, ainsi qu'aux besoins d'adaptation de produits existants à de nouvelles technologies. L'ouverture de la documentation et des spécifications a permis une grande richesse de solutions venant tant de bricoleurs que d'industriels. Inspiré par l'électronique, cette thèse contribue à l'amélioration de la flexibilité des systèmes logiciels tout en conservant un haut niveau de fiabilité. Les apports se font à trois niveaux. (1) Un nouveau modèle de composants qui offre une grande flexibilité et permet la connection de composants hétérogènes. (2) Des outils issus de l'ingénierie des modèles, pour créer, modifier, simuler et valider la structure et le comportement des assemblages de composants avant leur déploiement. (3) Un environnement d'exécution bati sur une architecture à base de services, pour supporter les évolutions, les adaptations et l'ouverture requises par le modèle de composant proposé. Cette thèse a été validée sur un cas concret dans un projet d'aide à domicile. Dans ce domaine, les systèmes logiciels doivent être adaptables et flexibles, pour répondre aux évolutions des besoins et pathologies des personnes âgées. Les bénéfices acquis de l'utilisation de cette approche dans ce contexte ont prouvé la pertinence de cette thèse.
15

Kevoree : Model@Runtime pour le développement continu de systèmes adaptatifs distribués hétérogènes

Fouquet, François 06 March 2013 (has links) (PDF)
La complexité croissante des systèmes d'information modernes a motivé l'apparition de nouveaux paradigmes (objets, composants, services, etc), permettant de mieux appréhender et maîtriser la masse critique de leurs fonctionnalités. Ces systèmes sont construits de façon modulaire et adaptable afin de minimiser les temps d'arrêts dus aux évolutions ou à la maintenance de ceux-ci. Afin de garantir des propriétés non fonctionnelles (par ex. maintien du temps de réponse malgré un nombre croissant de requêtes), ces systèmes sont également amenés à être distribués sur différentes ressources de calcul (grilles). Outre l'apport en puissance de calcul, la distribution peut également intervenir pour distribuer une tâche sur des nœuds aux propriétés spécifiques. C'est le cas dans le cas des terminaux mobiles proches des utilisateurs ou encore des objets et capteurs connectés proches physiquement du contexte de mesure. L'adaptation d'un système et de ses ressources nécessite cependant une connaissance de son état courant afin d'adapter son architecture et sa topologie aux nouveaux besoins. Un nouvel état doit ensuite être propagé à l'ensemble des nœuds de calcul. Le maintien de la cohérence et le partage de cet état est rendu particulièrement difficile à cause des connexions sporadiques inhérentes à la distribution, pouvant amener des sous-systèmes à diverger. En réponse à ces défi scientifiques, cette thèse propose une abstraction de conception et de déploiement pour systèmes distribués dynamiquement adaptables, grâce au principe du Model@Runtime. Cette approche propose la construction d'une couche de réflexion distribuée qui permet la manipulation abstraite de systèmes répartis sur des nœuds hétérogènes. En outre, cette contribution introduit dans la modélisation des systèmes adaptables la notion de cohérence variable, permettant ainsi de capturer la divergence des nœuds de calcul dans leur propre conception. Cette couche de réflexion, désormais cohérente "à terme", permet d'envisager la construction de systèmes adaptatifs hétérogènes, regroupant des nœuds mobiles et embarqués dont la connectivité peut être intermittente. Cette contribution a été concrétisée par un projet nommé ''Kevoree'' dont la validation démontre l'applicabilité de l'approche proposée pour des cas d'usages aussi hétérogènes qu'un réseau de capteurs ou une flotte de terminaux mobiles.

Page generated in 0.0848 seconds