• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mise en forme et caractérisation de nano-fibres fonctionnalisées par chimie click pour l'ingénierie tissulaire

Lancuski, Anica 20 December 2013 (has links) (PDF)
Le procédé d'électro-filage est devenu une technique privilégiée pour la préparation des matériaux nano-fibreux, grâce à sa simplicité de mise en oeuvre, la polyvalence des matières premières utilisées, ainsi que la diversité des structures obtenues. Sa capacité à produire des réseaux fibrillaires, proches de ceux du vivant ont ouvert la voie à d'importantes applications en ingénierie tissulaire. Cette étude a porté sur i) l'élaboration de nano-fibres à base de biopolymères commerciaux par un procédé d'électro-filage, pour des applications en ingénierie tissulaire, ii) leur fonctionnalisation et, iii) l'étude par SANS de la stabilité des chaînes de polymères constituant ces fibres. La stabilité d'un polymère est un facteur important pour la dégradation contrôlée dans les systèmes biologiques. Des études de la stabilité de polystyrène, utilisé ici comme un modèle simple, dans le milieu confiné des nanofibres, ont été élaborés avec la technique de diffusion de neutrons aux petits angles. L'investigation de la conformation des chaînes de polymère dans les nanofibres montre une anisotropie remarquable, en suggérant une forte déformation des chaînes dans la direction axiale des fibres d'au cours de procédé d'électro-filage. La dynamique de relaxation des chaînes a permis d'évaluer leur stabilité et vieillissement dans le milieu confiné des nanofibres. Des fibres biocompatibles à base de poly(-caprolactone) (PCL) ont été électro-filées et optimisées pour obtenir des matériaux nano-structurés et fonctionnalisés en vue d'applications biomédicales. L'introduction par chimie click azide-alcyne de groupes saccharidiques dans le coeur ou en surface des fibres de PCL a été réalisée très efficacement selon deux approches distinctes avant ou après électro-filage. Les caractérisations physico-chimiques et biologiques réalisées sur les différents systèmes ont notamment permis de mettre en évidence la biodisponibilité des sucres à la surface des fibres ainsi que leur capacité à rendre la PCL hydrophile. Ces résultats attestent du potentiel de la chimie click à permettre la fonctionnalisation de fibres de polyesters sans altération de leur structure ouvrant ainsi d'importantes perspectives dans le domaine de l'ingénierie tissulaire.
2

Mise en forme et caractérisation de nano-fibres fonctionnalisées par chimie click pour l'ingénierie tissulaire / Processing and characterization of click-functionalized electrospun nano-fibers toward tissue engineering applications

Lancuski, Anica 20 December 2013 (has links)
Le procédé d’électro-filage est devenu une technique privilégiée pour la préparation des matériaux nano-fibreux, grâce à sa simplicité de mise en oeuvre, la polyvalence des matières premières utilisées, ainsi que la diversité des structures obtenues. Sa capacité à produire des réseaux fibrillaires, proches de ceux du vivant ont ouvert la voie à d’importantes applications en ingénierie tissulaire. Cette étude a porté sur i) l'élaboration de nano-fibres à base de biopolymères commerciaux par un procédé d’électro-filage, pour des applications en ingénierie tissulaire, ii) leur fonctionnalisation et, iii) l’étude par SANS de la stabilité des chaînes de polymères constituant ces fibres. La stabilité d’un polymère est un facteur important pour la dégradation contrôlée dans les systèmes biologiques. Des études de la stabilité de polystyrène, utilisé ici comme un modèle simple, dans le milieu confiné des nanofibres, ont été élaborés avec la technique de diffusion de neutrons aux petits angles. L’investigation de la conformation des chaînes de polymère dans les nanofibres montre une anisotropie remarquable, en suggérant une forte déformation des chaînes dans la direction axiale des fibres d’au cours de procédé d’électro-filage. La dynamique de relaxation des chaînes a permis d’évaluer leur stabilité et vieillissement dans le milieu confiné des nanofibres. Des fibres biocompatibles à base de poly(-caprolactone) (PCL) ont été électro-filées et optimisées pour obtenir des matériaux nano-structurés et fonctionnalisés en vue d’applications biomédicales. L’introduction par chimie click azide-alcyne de groupes saccharidiques dans le coeur ou en surface des fibres de PCL a été réalisée très efficacement selon deux approches distinctes avant ou après électro-filage. Les caractérisations physico-chimiques et biologiques réalisées sur les différents systèmes ont notamment permis de mettre en évidence la biodisponibilité des sucres à la surface des fibres ainsi que leur capacité à rendre la PCL hydrophile. Ces résultats attestent du potentiel de la chimie click à permettre la fonctionnalisation de fibres de polyesters sans altération de leur structure ouvrant ainsi d’importantes perspectives dans le domaine de l’ingénierie tissulaire. / Electrospinning process has become a leading technique for producing nano-fibrous scaffolds that are highly porous, lighter, and with superior mechanical properties than their bulk equivalents. Structural properties of electrospun fibers closely resemble to the connective cell tissue, making these nonwovens readily employed in medicine and pharmacy. The research study of this thesis focused on bridging the commercially available biopolymers with the tissue engineering applications through multifunctional aspects of carbohydrates and click chemistry coupling. Biocompatible fibers were electrospun from poly(-caprolactone) and further optimized into clickable azido-PCL scaffolds. Their surface-activity was visualized after click coupling of a fluorescent dye onto PCL-based electrospun fibers, while hydrophilicity and bioactivity were achieved by covalent bonding of carbohydrates, enabling specific cell adhesion possibilities of these nonwovens. Selective lectin surface-immobilization revealed the potential of these scaffolds for specific protein adhesion and therefore controlled cell-material interactions. Polymer stability is an important factor for controlled degradation in tissue engineering applications. Small angle neutron scattering studies were carried out to estimate the stability of polystyrene as a model-polymer, its chain conformation in as-spun and thermally annealed electrospun fibers. Notable anisotropy of polymeric chains within the fibers was observed. The terminal relaxation time of the polystyrene was estimated and compared to the theoretical value.
3

Hydrogels multi-fonctionnels à base d'acide hyaluronique pour le contrôle de l'adhésion, la prolifération et la différentiation de cellules souches neuronales / Multi-functional hydrogels based on hyaluronic acid to control adhesion, growth and differentiation of neural stem cells

Tarus, Dominte 29 November 2016 (has links)
RésuméLes lésions du cerveau sont un problème médical majeur, celui-ci possédant des ressources limitées pour la guérison. Les patients souffrent souvent des déficiences graves et durables, dégradant leur qualité de vie et imposant des couts importants. Des thérapies qui visent l'implantation des cellules souches neurales supportées par un biomatériau qui imite la matrice extracellulaire du cerveau sont en développement. L’ECM du cerveau a une teneur élevée en acide hyaluronique (HA). Ce glycosaminoglycane possède la biocompatibilité et l'activité biologique requises par les applications avec des cellules souches neurales.Nous avons développé des hydrogels à base de HA, possédant des propriétés mécaniques et des densités en peptide d’adhésion cellulaire (GRGDS) contrôlées, pour l'étude in vitro de la différenciation de cellules souches neurales en neurones. L'analyse de neurites en 3-D par microscopie biphotonique a montré une excroissance accrue et une densité élevée des neurites dans les hydrogels les plus élastiques (G '= 400 Pa), combinées avec l'existence d'un optimum dans l'extension des neurites en fonction de la densité des ligands dans le cas des hydrogels contenant des GRGDS. La croissance des neurites relève vraisemblablement d’une combinaison d’interactions adhésives cellule-HA, cellule-GRGDS, et cellule-molécules extracellulaires secrétées.Par la suite la dégradabilité enzymatique des hydrogels de HA a été étudiée. Les hydrogels de HA se dégradent sous l'effet de l'enzyme hyaluronidase suivant un modèle mono-exponentiel, ce qui correspond à une population homogène de chaînes de HA clivables. Les hydrogels avec des modules d'élasticité plus élevés, montrent des vitesses de dégradation enzymatique plus faibles. Le remplacement de l'agent de réticulation PEG-bis(thiol) pour un polymère HA-(SH)3 clivable par voie enzymatique conduit à une réduction du temps nécessaire à la dégradation complète des hydrogels.Dans un troisième temps, nous avons développé des gels de héparosane sans activité biologique qui pourraient révéler une meilleure compréhension du rôle joué par le HA dans la différentiation des NSCs et dans l’extension des neurites. Nous avons montré que le CD44 joue un rôle mesurable dans le processus d'adhésion des cellules MEF. Il existe d'autres procédés par lesquels ces cellules peuvent adhérer sur les hydrogels d’héparosane, cependant la force de ces interactions est plus faible. / AbstractDamage caused to the central nervous system (CNS) is a major medical concern. As the CNS has limited ability to regenerate its damaged cells, patients can suffer from serious and long-term disabilities and impairments, which put strains on public healthcare systems. Therapies that aim to implant neural stem cells together scaffolds that mimic the extracellular matrix of the brain are being developed. Hyaluronic acid is an important component of the brain ECM. This glycosaminoglycan possesses the required biocompatibility and bioactivity for use in neural stem cells applications.We have developed HA-based hydrogels with controlled mechanical properties and cell adhesion peptide (GRGDS) densities for the in vitro study of neural precursor cells’ differentiation into neurons. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed an increased outgrowth and density of neurites in the softest hydrogels (G’ = 400 Pa), combined with the existence of an optimum in neurite outgrowth as a function of ligand density in the case of hydrogels containing GRGDS. Neurite outgrowth in these hydrogels most likely involves a combination of adhesive interactions between cell-HA, cell-GRGDS moieties, and cell-secreted extracellular molecules.The enzymatic degradability of HA hydrogels was then investigated. The HA hydrogels degrade under the effect of the Hyaluronidase enzyme following a mono-exponential model, corresponding to a homogenous population of cleavable HA polymer chains. Hydrogels with higher elastic moduli have progressively lower enzymatic degradation rates. The substitution of the PEG-bis(thiol) crosslinker by an enzymatically cleavable HA-(SH)3 polymer led to a reduction in the time required for the complete degradation of the hydrogels.Finally we developed heparosan hydrogels that are devoid of biological functions and thus provide better insight into the role of HA in NSCs differentiation and neurite outgrowth. We showed that CD44 plays a measurable role in the adhesion process of MEF cells. There are alternative processes through which cells can attach to the heparosan hydrogels however the strength of these adhesions is weaker. Heparosan is a viable biomaterial for hydrogel synthesis that does not interact with the CD44 receptor, resulting in lower cellular adhesions.

Page generated in 0.0614 seconds