• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acousto-fluidique à ondes évanescentes, application à l'organisation de cultures de cellules adhérentes / Acoustofluidics evanescent waves : application to adherent cells pattern in culture conditions

Aubert, Vivian 08 December 2017 (has links)
Les ondes acoustiques permettent la manipulation, le tri ou le mélange de particules ou de fluides à l'échelle micrométrique voire nanométrique sans contact et sans marquage. Nous tirons parti de la force de radiation acoustique pour manipuler des cellules vivantes. La plupart des techniques d'émission repose sur l'utilisation d'ondes de surface supersoniques. Cette approche, qui a largement fait ses preuves, requiert des substrats à matériau piézoélectriques. Elle reste, dans les cas pratiques, limitée par une forte atténuation. Ici, nous exploitons le régime subsonique de propagation afin de générer un champ acoustique évanescent dit de "Scholte" qui concentre son énergie au voisinage du substrat où sont précisément situés les objets. Ces ondes présentent donc la caractéristique de ne pas rayonner dans le fluide et ne sont par conséquent pas atténuées. Leur excitation ne requiert aucun matériau particulier et peut-être réalisée à distance de la zone d'intérêt. Nous avons démontré l'existence de ces ondes et illustré leur potentiel au travers d'exemples clés pour la microfluidique. En particulier, l'utilisation d'un champ tournant a montré la possibilité de piéger et d'entraîner la rotation à l'échelle individuelle. Nous décrivons aussi une méthode de caractérisation du plasma sanguin par "centrifugation" acoustique. Ensuite, un réseau de pièges acoustiques réversible a été adapté afin d'étudier son effet sur des cellules adhérentes (fibroblastes) en conditions de culture. Un traitement statistique nous a permis d'étudier les modifications d'organisation de la culture en fonction du phénotype. Ce travail démontre l'intérêt de l'acoustique dans l'étude de la motilité et des effets mécanotransducteurs sur une population cellulaire. / It has been shown that the use of acoustic waves enables nanoparticles, microbubbles, drops or microbeads, living cells and fluids to be moved, sorted, or mixed in a contactless and label-free manner. Here, we take advantage of the acoustic radiation force to manipulate living cells. Most of the applications and their associated techniques rely on the use of the so-called SAW (Rayleigh Surface Acoustic waves). This technique is powerful but requires piezoelectric substrates and suffers from a high damping due to radiation losses in the supersonic regime. Here, we work instead in the subsonic regime of propagation which allows us to generate an evanescent field ("Scholte" waves) thanks to a thin substrate. This wave presents very interesting characteristics since acoustic energy is concentrated in the vicinity of the substrate where objects are located. Moreover, the propagation is lossless and doesn't require any substrate or particular medium. We then showed the potential of this new approach through key-applications in microfluidics. This device enables to establish patterns and to concentrate cells in a flow. We have also designed a rotating acoustic field and shown the possibility of trapping and spinning of individual cells. We also describe a blood plasma characterization method by acoustic "centrifugation" within a drop. In a second part, we have designed a network of switchable acoustic traps compatible with living cells in order to study its effect on a population of adherent cells in culture. It reveals a change of cells behaviour depending on the phenotype. This work opens the way to the use of acoustics in the study of mechanotransductive effects on cells population.
2

Dynamique spatio-temporelle des déformations membranaires et de la migration cellulaire :

Stéphanou, Angélique 04 February 2002 (has links) (PDF)
La thèse concerne l'étude des déformations cellulaires à travers 2 approches complémentaires, expérimentale et théorique. motivées par la mise en évidence lors de travaux antérieurs, de l'existence d'une certaine auto-organisation des schémas des déformations membranaires pour des cellules arrondies. Nous avons choisi de nous intéresser ici au cas de fibroblastes L929 qui présentent une organisation plus complexe du cytosquelette. La caractérisation expérimentale a été réalisée à partir de séquences d'images vidéomicroscopiques. Les données morphodynamiques des cellules ont été extraites des séquences par 2 méthodes : (i) une segmentation des contours et (ii) une méthode de flot optique. Les résultats montrent que les cellules présentent le plus souvent des morphologies symétriques caractérisées dynamiquement par un mouvement pulsant synchronisé et périodique. Sur le plan théorique, nous nous sommes intéressés à un modèle cytomécanique des déformations décrivant la dynamique de poly/dépolymérisation de l'actine en relation avec les interactions mécaniques entre la membrane et le cytosquelette. Les simulations montrent la capacité du modèle à générer qualitativement des états pulsants tels qu'observés. Deux extensions du modèle ont alors été proposées pour prendre en compte : (i) l'interaction cellule-cellule caractérisée par l'inhibition de l'activité protrusive et (ii) la migration cellulaire par chimiotaxie, en agissant dans les 2 cas sur les propriétés mécaniques de la membrane et du cortex. Des comportements cellulaires réalistes ont ainsi pu être simulés. Finalement, une nouvelle formulation du modèle initial a été proposée pour modéliser les longs prolongements membranaires des fibroblastes. Le travail réalisé permet en particulier de proposer la possibilité d'utiliser les paramètres morphodynamiques comme critères d'identification des phénotypes cellulaires.

Page generated in 0.0728 seconds