• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Mathematical aspects of wave theory for inhomogeneous materials / by Ashley Ian Larsson

Larsson, Ashley Ian January 1991 (has links)
Bibliography: leaves 135-151 / v, 151 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Applied Mathematics, 1991
32

A study to determine a practical technology for manufacturing components made of a multiphase perfect material

Wang, Feng, January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2007. / Title proper from title frame. Also available in printed format.
33

On forward and inverse modelling in seismology : raytracing in inhomogeneous media /

Smith, Peter M., January 2006 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2006. / Bibliography: leaves 115-116. Also available online.
34

Models for inhomogeneities and thermal fluctuations in two-dimensional superconductors

Valdez-Balderas, Daniel, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 126-133).
35

Probabilistic modelling of heterogeneous media

Feng, Jianwen January 2013 (has links)
No description available.
36

Computer simulations of realistic three-dimensional microstructures

Mao, Yuxiong 08 March 2010 (has links)
A novel and efficient methodology is developed for computer simulations of realistic two-dimensional (2D) and three-dimensional (3D) microstructures. The simulations incorporate realistic 2D and 3D complex morphologies/shapes, spatial patterns, anisotropy, volume fractions, and size distributions of the microstructural features statistically similar to those in the corresponding real microstructures. The methodology permits simulations of sufficiently large 2D as well as 3D microstructural windows that incorporate short-range (on the order of particle/feature size) as well as long-range (hundred times the particle/feature size) microstructural heterogeneities and spatial patterns at high resolution. The utility of the technique has been successfully demonstrated through its application to the 2D microstructures of the constituent particles in wrought Al-alloys, the 3D microstructure of discontinuously reinforced Al-alloy (DRA) composites containing SiC particles that have complex 3D shapes/morphologies and spatial clustering, and 3D microstructure of boron modified Ti-6Al-4V composites containing fine TiB whiskers and coarse primary TiB particles. The simulation parameters are correlated with the materials processing parameters (such as composition, particle size ratio, extrusion ratio, extrusion temperature, etc.), which enables the simulations of rational virtual 3D microstructures for the parametric studies on microstructure-properties relationships. The simulated microstructures have been implemented in the 3D finite-elements (FE)-based framework for simulations of micro-mechanical response and stress-strain curves. Finally, a new unbiased and assumption free dual-scale virtual cycloids probe for estimating surface area of 3D objects constructed by 2D serial section images is also presented.
37

Sputtering of Bi and Preferential Sputtering of an Inhomogeneous Alloy

Deoli, Naresh T. 12 1900 (has links)
Angular distributions and total yields of atoms sputtered from bismuth targets by normally incident 10 keV -50 keV Ne+ and Ar+ ions have been measured both experimentally and by computer simulation. Polycrystalline Bi targets were used for experimental measurements. The sputtered atoms were collected on high purity aluminum foils under ultra-high vacuum conditions, and were subsequently analyzed using Rutherford backscattering spectroscopy. The Monte-Carlo based SRIM code was employed to simulate angular distributions of sputtered Bi atoms and total sputtering yields of Bi to compare with experiment. The measured sputtering yields were found to increase with increasing projectile energy for normally incident 10 keV - 50 keV Ne+ and Ar+ ions. The shapes of the angular distributions of sputtered Bi atoms demonstrated good agreement between experiment and simulation in the present study. The measured and simulated angular distributions of sputtered Bi exhibited an over-cosine tendency. The measured value of the degree of this over-cosine nature was observed to increase with increasing incident Ne+ ion energy, but was not strongly dependent on incident Ar+ ion energy. The differential angular sputtering yield and partial sputtering yields due to Ar ion bombardment of an inhomogeneous liquid Bi:Ga alloy have been investigated, both experimentally and by computer simulation. Normally incident 25 keV and 50 keV beams of Ar+ were used to sputter a target of 99.8 at% Ga and 0.2 at% Bi held at 40° C in ultra-high vacuum (UHV), under which conditions the alloy is known to exhibit extreme Gibbsian surface segregation that produces essentially a monolayer of Bi atop the bulk liquid. Angular distributions of sputtered neutrals and partial sputtering yields obtained from the conversion of areal densities of Bi and Ga atoms on collector foils were determined. The Monte-Carlo based SRIM code was employed to simulate the experiment and obtain the angular distribution of sputtered components. The angular distribution of sputtered Ga atoms, originating from underneath the surface monolayer, was measured to be sharply peaked in angle about the surface normal direction compared to the Bi atoms originating from surface monolayer. The simulation study produced contradicting results, where the species originating from surface monolayer was strongly peaked around the surface normal compared to the species originating from beneath the surface monolayer.
38

Modeling Terahertz Diffuse Scattering from Granular Media Using Radiative Transfer Theory

Nam, Kyung Moon 01 January 2010 (has links)
Terahertz (THz) spectroscopy can potentially be used to probe and characterize inhomogeneous materials, however spectroscopic identification of such materials from spectral features of diffuse returns is a relatively underdeveloped area of study. In this thesis, diffuse THz scattering from granular media is modeled by applying radiative transfer (RT) theory for the first time in THz sensing. Both classical RT theory and dense media radiative transfer (DMRT) theory based on the quasi-crystalline approximation (QCA) are used to calculate diffuse scattered intensity. The numerical solutions of the vector radiative transfer equations (VRTE) were coded and calculated in MATLAB. The diffuse scattered field from compressed Polyethylene (PE) pellets containing steel spheres was measured in both transmission and reflection using a THz time domain spectroscopy (THz-TDS) system. Measurement results showed energy redistribution by granular media due to volume scattering as well as angle dependent spectral features due to Mie scattering. The RT model was validated by successfully reproducing qualitative features observed in experimental results. Diffuse intensity from granular media containing Teflon, lactose sugar, and C4 explosive was then calculated using the RT models. Simulation results showed the amplitude of diffuse intensity is affected by factors such as grain size, fractional volume of grains, thickness of scattering layer, and scattering angles. Spectral features were also observed in the diffuse intensity spectra from media containing grains with THz spectral signatures. The simulation results suggest the possibility of identifying materials from diffuse intensity spectra.
39

A hierarchical framework for the multiscale modeling of microstructure evolution in heterogeneous materials

Luscher, Darby J. 31 March 2010 (has links)
All materials are heterogeneous at various scales of observation. The influence of material heterogeneity on nonuniform response and microstructure evolution can have profound impact on continuum thermomechanical response at macroscopic "engineering" scales. In many cases, it is necessary to treat this behavior as a multiscale process. This research developed a hierarchical multiscale approach for modeling microstructure evolution. A theoretical framework for the hierarchical homogenization of inelastic response of heterogeneous materials was developed with a special focus on scale invariance principles needed to assure physical consistency across scales. Within this multiscale framework, the second gradient is used as a nonlocal kinematic link between the response of a material point at the coarse scale and the response of a neighborhood of material points at the fine scale. Kinematic consistency between two scales results in specific requirements for constraints on the fluctuation field. A multiscale internal state variable (ISV) constitutive theory is developed that is couched in the coarse scale intermediate configuration and from which an important new concept in scale transitions emerges, namely scale invariance of dissipation. At the fine scale, the material is treated using finite element models of statistical volume elements of microstructure. The coarse scale is treated using a mixed-field finite element approach. The coarse scale constitutive equations are implemented in a finite deformation hyperelastic inelastic integration scheme developed for second gradient constitutive models. An example problem based on an idealized porous microstructure is presented to illustrate the approach and highlight its predictive utility. This example and a few variations are explored to address the boundary-value-problem dependent nature of length scale parameters employed in nonlocal continuum theories. Finally, strategies for developing meaningful kinematic ISVs, free energy functions, and the associated evolution kinetics are presented. These strategies are centered on the goal of accurately representing the energy stored and dissipated during irreversible processes.
40

Etude du comportement mécanique des terrains anisotropes lors de travaux de génie civil / Study of the mechanical behaviour of anisotropic grounds during civil engineering construction

Le Cor, Thomas 25 November 2014 (has links)
Les travaux de recherche présentés dans ce manuscrit ont été menés dans le cadre d’une convention CIFRE avec le Groupe Dacquin. Le sous-sol rennais est composé, en majorité, de schistes datés du Briovérien. Ces terrains, qui peuvent être rencontrés sur une grande partie du massif armoricain, présentent des degrés d’altération et de fracturation extrêmement variables à l’échelle du bassin rennais. Cette variabilité est très difficile à prendre en compte dans le cadre de la réalisation de soutènement, tant au niveau de la conception qu’au niveau de l’exécution. Dans un premier temps, des modélisations basés sur la méthode des éléments finis (logiciel PLAXIS 2D ©) ont été entreprises afin d’évaluer l’influence de la prise en compte d’une anisotropie du terrain sur le comportement de la paroi, en termes de moments et de déplacements. Le modèle utilisé permettait de prendre en compte une anisotropie élastique combinée à un critère orienté de plasticité de type Mohr-Coulomb. Les résultats obtenus avec ce modèle, pour différentes orientations du critère de plasticité, ont été comparés à ceux obtenus avec un modèle élastique isotrope et critère de plasticité de type Mohr-Coulomb. La même étude a été menée avec un second logiciel éléments finis (CESAR-LCPC) afin de comparer les résultats obtenus. Dans les deux cas une influence importante de l’orientation du critère de plasticité a été observée pouvant conduire à des résultats plus défavorables, selon l’orientation, que ceux obtenus avec le modèle isotrope. Ces résultats ont confirmé la nécessité de mieux caractériser l’anisotropie dans des matériaux tels que les schistes Briovériens. La caractérisation du matériau a donc été menée dans un second temps sur des prélèvements répartis sur la ville de Rennes et ses alentours (lors de travaux d’excavations ou sur des talus). Elle a permis de balayer les caractéristiques des schistes de l’échelle microscopique jusqu’à l’échelle macroscopique. La caractérisation microscopique, basée sur des observations au microscope à balayage électronique, des essais de diffraction des rayons X et des observations de lames minces, a permis de mettre en évidence des variations dans la pétrographie des échantillons (schistosité, granulométrie, teneur en argiles) permettant de les différencier en deux types : grès et siltites. La caractérisation à l’échelle macroscopique a été divisée en trois axes : la caractérisation de la matrice rocheuse et de son anisotropie (essais de compression uniaxiale, mesures de vitesses de propagation d’ondes et essais au scléromètre), la caractérisation de discontinuités exprimées (cisaillement direct) et la caractérisation de la résistance à l’usure (essais de broyabilité et Micro-Deval modifiés). Les siltites se sont révélées être extrêmement sensibles à l’eau (forte diminution des caractéristiques mécaniques mesurées) tandis que les échantillons gréseux l’étaient dans une moindre mesure. L’ensemble des essais réalisés a permis d’établir des ordres de grandeurs de variations des propriétés mécaniques des schistes du Briovérien. Enfin la classification des schistes briovériens élaborés par des géotechniciens pour la seconde ligne de métro de Rennes a été complétée en vue de mieux définir les classes intermédiaires de résistance. / Research work presented in this phD thesis was financed by a CIFRE grant given to Groupe Dacquin. Ground from the city of Rennes is, for the majority of it, composed of schists from the Brioverian era. These schists which can be encountered in the entire Armorican massif, present a weathering and a fracturing degree highly variable. This variability is hardly considered for the construction of retaining structure whether during the design step or the execution step. First, modellings using the finite elements method (PLAXIS 2D ©) have been carried out in order to evaluate the influence of ground anisotropy on the retaining wall behaviour (horizontal displacements and bending moments). The model used combined elastic anisotropy with an oriented plasticity criterion (type Mohr-Coulomb). Results obtained with this model, for different orientations of the plasticity criterion, were compared with the ones from the elastic isotropic model (with a Mohr-Coulomb plastic criterion). The same study was carried out with another finite elements software (CESAR-LCPC) in order to compare the results between the two sofwares. In both cases, an important influence of the orientation of the plasticity criterion was noted and lead to higher efforts in the wall, for certain orientations, compared to the isotropic model. These results confirmed the need of a better characterization of the anisotropy in materials such as Brioverian schists. In a second time, the characterization of the material was carried out on samplings spread over the city of Rennes and its area (during excavation work or on natural banks). Characterization was conducted from the microscopic to the macroscopic scale. Microscopic characterization based on observations with a scanning electron microscope, XRD analyses and thin section observations showed variations in the petrography of the samples (schistosity, granulometry, clay content) that lead to the differentiation of two types: sandstone and siltstone. The characterization at the macroscopic scale was divided into three parts: characterization of the rock matrix and its anisotropy (uniaxial compression tests, ultrasonic wave velocities and Schmidt hammer test), characterization of opened discontinuities (direct shear test) and the characterization of wear resistance (grindability and Micro-Deval tests). Siltstone samples were extremely sensitive to the water content (important decrease of the mechanical characteristics measured) whereas sandstones were less sensitive. The tests carried out lead to the definition of ranges for the mechanical properties of the Brioverian schists. Classification of Brioverian schists established by geotechnical engineers for the second subway line of Rennes was completed in order to better define the transitional states of strength of the material.

Page generated in 0.0771 seconds