Spelling suggestions: "subject:"initiator & amp lt chemie& amp gt "" "subject:"initiator & amp lt bohemie& amp gt ""
1 |
Synthesis and characterization of stimuli-responsive microgels based on poly(glycidol)block copolymers / Synthese und Charakterisierung von stimuli-sensitiven Mikrogelen basierend auf Polyglycidol-BlockcopolymerenMendrek, Sebastian 24 April 2006 (has links) (PDF)
New water soluble, attainable to ATRP polymerization Cl-terminated poly(glycidol) macroinitiators were prepared by modification of (Omega)-hydroxyl group of poly(glycidol acetal) using 2-chloropropionyl chloride fallowed by selective acidic deprotection of acetal groups. The obtained macroinitiators of different molar masses were successfully employed in ATRP of NIPAM and 4VP to give well-defined stimuli sensitive block copolymers of targeted molar ratio of blocks. The results obtained from light scattering methods showed formation of stable aggregates upon stimuli (pH or temperature) by all the obtained polymers. Additionally, photocrosslinkable block copolymers of glycidol and NIPAM having incorporated moieties of chromophore (2-(dimethyl maleinimido)-N-ethyl-acryl amide) were prepared using macroinitiator technique and used to synthesis of temperature sensitive microgels. Conjunction points have been successfully formed by UV irradiation of polymer water solution above cloud point. The influence of such parameters like block ratio, block length, amount of chromophore, concentration, irradiation time, temperature and heating rate on the properties of obtained microgels was investigated. The obtained core-shell structures were stable under critical conditions and showed continuous volume phase separation process upon increase of temperature, fully reversible and reproducible (no hysteresis effect). Thus, the proposed method not only gave the opportunity to control size or swelling degree of microgels, but also diminished gradient in crosslinking density (random chromophore distribution in polymer backbone), improved colloid stability (poly(glycidol) shell) and completely eliminated additives (surfactants, initiators, stabilizers).
|
2 |
Synthesis and characterization of stimuli-responsive microgels based on poly(glycidol)block copolymersMendrek, Sebastian 05 April 2006 (has links)
New water soluble, attainable to ATRP polymerization Cl-terminated poly(glycidol) macroinitiators were prepared by modification of (Omega)-hydroxyl group of poly(glycidol acetal) using 2-chloropropionyl chloride fallowed by selective acidic deprotection of acetal groups. The obtained macroinitiators of different molar masses were successfully employed in ATRP of NIPAM and 4VP to give well-defined stimuli sensitive block copolymers of targeted molar ratio of blocks. The results obtained from light scattering methods showed formation of stable aggregates upon stimuli (pH or temperature) by all the obtained polymers. Additionally, photocrosslinkable block copolymers of glycidol and NIPAM having incorporated moieties of chromophore (2-(dimethyl maleinimido)-N-ethyl-acryl amide) were prepared using macroinitiator technique and used to synthesis of temperature sensitive microgels. Conjunction points have been successfully formed by UV irradiation of polymer water solution above cloud point. The influence of such parameters like block ratio, block length, amount of chromophore, concentration, irradiation time, temperature and heating rate on the properties of obtained microgels was investigated. The obtained core-shell structures were stable under critical conditions and showed continuous volume phase separation process upon increase of temperature, fully reversible and reproducible (no hysteresis effect). Thus, the proposed method not only gave the opportunity to control size or swelling degree of microgels, but also diminished gradient in crosslinking density (random chromophore distribution in polymer backbone), improved colloid stability (poly(glycidol) shell) and completely eliminated additives (surfactants, initiators, stabilizers).
|
Page generated in 0.1397 seconds