• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methoden zur Synthese von definierten bioorganisch-synthetischen Blockcopolymeren / Pathways to defined bioorganic-synthetic conjugates

Rettig, Hartmut Arnim January 2006 (has links)
Bioorganisch-synthetische Blockcopolymere sind sowohl für die Materialwissenschaft als auch für die Medizin hochinteressant. Diese Arbeit beschäftigte sich mit neuen Synthesewegen für die Herstellung dieser Blockcopolymere. Zunächst wurde der klassische Ansatz zur Herstellung eines Blockcopolymers über die Kupplung der beiden Segmente aufgegriffen. Hierzu wurde eine Methode zur Synthese von selektiv säureendfunktionalisierten Polyacrylaten mittels einer terminalen Benzylesterschutzgruppe vorgestellt. Für die Herstellung von bioorganisch-synthetischen Blockcopolymeren mit einem größeren Polymersegment wurde daher ein anderer Syntheseansatz entwickelt. Dieser geht von einem funktionalisierten Oligopeptid aus, an dem durch Polymerisation das synthetische Segment aufgebaut wird. Der Aufbau erfolgte durch kontrolliert radikalische Polymerisation, um ein möglichst definiertes Segment zu erhalten. Zunächst wurde eine Synthese von Oligopeptid-Makroinitiatoren für die ATRP-Polymerisation durchgeführt. Es konnte gezeigt werden, dass in geeigneten polaren Lösungsmitteln (DMSO, DMF) eine Polymerisation mit dem ATRP-Oligopeptid-Makroinitiator erfolgreich ist. Allerdings treten während der Polymerisation Wechselwirkungen zwischen dem Katalysator und dem Oligopeptid auf. Eine Alternative bietet die RAFT-Polymerisation, da sie ohne einen Katalysator durchgeführt wird. Es gelang ausgehend von dem Oligopeptid-ATRP-Makroinitiator den Überträger herzustellen. Die RAFT-Polymerisation mit einem Oligopeptidüberträger stellt eine wichtige Methode für die Herstellung von bioorganisch-synthetischen Blockcopolymeren dar. Sie besitzt eine hohe Toleranz gegenüber funktionellen Gruppen. Die so hergestellten Blockcopolymere sind frei von Verunreinigungen, wie z.B. Übergangsmetallen. Dabei läßt sich das Molekulargewicht des synthetischen Blocks bei einer Polydispersität um 1,2 gut kontrollieren. / Bioorganic – synthetic conjugates have received a lot of attention concerning their potentials in the fields of material science, pharmaceutics and medicine. This work presents new synthetic routes to these conjugates. For conjugates consisting of small blocks an approach via coupling is possible. For larger blocks it was necessary to develop a different approach via controlled radical polymerisation methods. To begin with oligopeptide macroinitiators for Atom Transfer Radical Polymerisation were synthesized and successful applied in polymerization. The reaction conditions were optimized by studying the polymerisation kinetics. Although the polymerization results in well-defined products, interactions between the copper catalyst and the peptide are evident and cannot be suppressed. To overcome this problem the polymerization method had to be changed. Therefore oligopeptide-based reversible addition fragmentation transfer (RAFT) agents were developed. Well-defined conjugates comprising sequenz-defined peptides and synthetic polymers could be accessed by applying RAFT polymerization techniques in combination with the peptide macrotransfer agents. Polymerization reactions of n-butyl acrylate were performed in solution, yielding peptide-polymer conjugates with controllable molecular weight and low polydispersities.
2

Synthesis of Functional Block Copolymers for use in Nano-hybrids

Ibrahim, Saber 12 May 2011 (has links) (PDF)
Polystyrene block polyethyleneimine (PS-b-PEI) copolymer prepared by combining PS and poly(2-methyl-2-oxazoline) (PMeOx) segments together through two strategies. Furthermore, PMeOx block was hydrolysis to produce PEI block which linked with PS block. Macroinitiator route is one of these two ways to prepare PS-b-PEI copolymer. Polystyrene macroinitiator or poly(2-methyl-2-oxazoline) macroinitiator prepared through Nitroxide Mediate Radical Polymerization (NMRP) or Cationic Ring Opening Polymerization (CROP) respectively. Each macroinitiator has active initiated terminal group toward another block monomer. Second strategy based on coupling of PS segment with PMeOx block through “click” coupling chemistry. Polystyrene modified with terminal azide moiety are combined with PMeOx functionalized with alkyne group via 1,3 dipolar cycloaddition reaction “click reaction”. PS-b-PMeOx was hydrolysis in alkaline medium to produce amphiphilic PS-b-PEI copolymer. A set of block copolymer with different block ratios was prepared and investigated to select suitable block copolymer for further applications. Stichiometric PS-b-PEI copolymer selected to stabilize gold nanoparticle (Au NPs) in polymer matrix. PEI segment work as reducing and stabilizing agent of gold precursor in aqueous solution. Various concentrations of gold precursor were loaded and its effect on UVVIS absorbance, particle size and particle distribution studied. In addition, reduction efficiency of PEI block was determined from XPS measurements. The thickness of Au NPs/PS-b-PEI thin film was determined with a novel model for composite system. On the other hand, Gallium nitride quantum dots (GaN QDs) stabilized in PS-b-PEI copolymer after annealing. Our amphiphilic block copolymer exhibit nice thermal stability under annealing conditions. GaN QDs prepared in narrow nano-size with fine particle distribution. Blue ray was observed as an indication to emission activity of GaN crystal. Over all, PS-b-PEI copolymer synthesized through macroinitiator and click coupling methods. It was successfully stabilized Au NPs and GaN QDs in polymer matrix with controlled particle size which can be post applied in tremendous industrial and researcher fields.
3

Synthesis of Functional Block Copolymers for use in Nano-hybrids

Ibrahim, Saber 22 March 2011 (has links)
Polystyrene block polyethyleneimine (PS-b-PEI) copolymer prepared by combining PS and poly(2-methyl-2-oxazoline) (PMeOx) segments together through two strategies. Furthermore, PMeOx block was hydrolysis to produce PEI block which linked with PS block. Macroinitiator route is one of these two ways to prepare PS-b-PEI copolymer. Polystyrene macroinitiator or poly(2-methyl-2-oxazoline) macroinitiator prepared through Nitroxide Mediate Radical Polymerization (NMRP) or Cationic Ring Opening Polymerization (CROP) respectively. Each macroinitiator has active initiated terminal group toward another block monomer. Second strategy based on coupling of PS segment with PMeOx block through “click” coupling chemistry. Polystyrene modified with terminal azide moiety are combined with PMeOx functionalized with alkyne group via 1,3 dipolar cycloaddition reaction “click reaction”. PS-b-PMeOx was hydrolysis in alkaline medium to produce amphiphilic PS-b-PEI copolymer. A set of block copolymer with different block ratios was prepared and investigated to select suitable block copolymer for further applications. Stichiometric PS-b-PEI copolymer selected to stabilize gold nanoparticle (Au NPs) in polymer matrix. PEI segment work as reducing and stabilizing agent of gold precursor in aqueous solution. Various concentrations of gold precursor were loaded and its effect on UVVIS absorbance, particle size and particle distribution studied. In addition, reduction efficiency of PEI block was determined from XPS measurements. The thickness of Au NPs/PS-b-PEI thin film was determined with a novel model for composite system. On the other hand, Gallium nitride quantum dots (GaN QDs) stabilized in PS-b-PEI copolymer after annealing. Our amphiphilic block copolymer exhibit nice thermal stability under annealing conditions. GaN QDs prepared in narrow nano-size with fine particle distribution. Blue ray was observed as an indication to emission activity of GaN crystal. Over all, PS-b-PEI copolymer synthesized through macroinitiator and click coupling methods. It was successfully stabilized Au NPs and GaN QDs in polymer matrix with controlled particle size which can be post applied in tremendous industrial and researcher fields.
4

Synthesis and characterization of stimuli-responsive microgels based on poly(glycidol)block copolymers / Synthese und Charakterisierung von stimuli-sensitiven Mikrogelen basierend auf Polyglycidol-Blockcopolymeren

Mendrek, Sebastian 24 April 2006 (has links) (PDF)
New water soluble, attainable to ATRP polymerization Cl-terminated poly(glycidol) macroinitiators were prepared by modification of (Omega)-hydroxyl group of poly(glycidol acetal) using 2-chloropropionyl chloride fallowed by selective acidic deprotection of acetal groups. The obtained macroinitiators of different molar masses were successfully employed in ATRP of NIPAM and 4VP to give well-defined stimuli sensitive block copolymers of targeted molar ratio of blocks. The results obtained from light scattering methods showed formation of stable aggregates upon stimuli (pH or temperature) by all the obtained polymers. Additionally, photocrosslinkable block copolymers of glycidol and NIPAM having incorporated moieties of chromophore (2-(dimethyl maleinimido)-N-ethyl-acryl amide) were prepared using macroinitiator technique and used to synthesis of temperature sensitive microgels. Conjunction points have been successfully formed by UV irradiation of polymer water solution above cloud point. The influence of such parameters like block ratio, block length, amount of chromophore, concentration, irradiation time, temperature and heating rate on the properties of obtained microgels was investigated. The obtained core-shell structures were stable under critical conditions and showed continuous volume phase separation process upon increase of temperature, fully reversible and reproducible (no hysteresis effect). Thus, the proposed method not only gave the opportunity to control size or swelling degree of microgels, but also diminished gradient in crosslinking density (random chromophore distribution in polymer backbone), improved colloid stability (poly(glycidol) shell) and completely eliminated additives (surfactants, initiators, stabilizers).
5

Synthesis and characterization of stimuli-responsive microgels based on poly(glycidol)block copolymers

Mendrek, Sebastian 05 April 2006 (has links)
New water soluble, attainable to ATRP polymerization Cl-terminated poly(glycidol) macroinitiators were prepared by modification of (Omega)-hydroxyl group of poly(glycidol acetal) using 2-chloropropionyl chloride fallowed by selective acidic deprotection of acetal groups. The obtained macroinitiators of different molar masses were successfully employed in ATRP of NIPAM and 4VP to give well-defined stimuli sensitive block copolymers of targeted molar ratio of blocks. The results obtained from light scattering methods showed formation of stable aggregates upon stimuli (pH or temperature) by all the obtained polymers. Additionally, photocrosslinkable block copolymers of glycidol and NIPAM having incorporated moieties of chromophore (2-(dimethyl maleinimido)-N-ethyl-acryl amide) were prepared using macroinitiator technique and used to synthesis of temperature sensitive microgels. Conjunction points have been successfully formed by UV irradiation of polymer water solution above cloud point. The influence of such parameters like block ratio, block length, amount of chromophore, concentration, irradiation time, temperature and heating rate on the properties of obtained microgels was investigated. The obtained core-shell structures were stable under critical conditions and showed continuous volume phase separation process upon increase of temperature, fully reversible and reproducible (no hysteresis effect). Thus, the proposed method not only gave the opportunity to control size or swelling degree of microgels, but also diminished gradient in crosslinking density (random chromophore distribution in polymer backbone), improved colloid stability (poly(glycidol) shell) and completely eliminated additives (surfactants, initiators, stabilizers).

Page generated in 0.0568 seconds