• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Multi-functional Stem Cell Delivery Systems for Cardiac Therapy

Li, Zhenqing 22 June 2012 (has links)
No description available.
2

Development of an Injectable Hydrogel Platform to Capture and Eradicate Glioblastoma Cells with Chemical and Physical Stimuli

Khan, Zerin Mahzabin 15 May 2023 (has links)
Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor. Even after patients undergo maximum and safe surgical resection followed by adjuvant chemotherapy and radiation therapy, residual GBM cells form secondary tumors which lead to poor survival times and prognoses for patients. This tumor recurrence can be attributed to the inherent GBM heterogeneity that makes it difficult to eradicate the therapy-resistant and tumorigenic subpopulation of GBM cells with stem cell-like properties, referred to as glioma stem cells (GSCs). Additionally, the migratory nature of GBM/GSCs enable them to invade into the healthy brain parenchyma beyond the resection cavity to generate new tumors. In an effort to address these challenges of GBM recurrence, this research aimed to develop a biomaterials-based approach to attract, capture, and eradicate GBM cells and GSCs with chemical and physical stimuli. Specifically, it is proposed that after surgical removal of the primary GBM tumor mass, an injectable hydrogel can be dispensed into the resection cavity for crosslinking in situ. A combination of chemical and physical cues can then induce the migration of the residual GBM/GSCs into the injectable hydrogel to localize and concentrate the malignant cells prior to non-invasively abating them. In order to develop this proposed treatment, this dissertation focused on 1) characterizing and optimizing the thiol-Michael addition injectable hydrogel, 2) attracting and entrapping GBM/GSCs into the hydrogel with CXCL12-mediated chemotaxis, and 3) assessing the feasibility of utilizing histotripsy to mechanically and non-invasively ablate cells entrapped in the hydrogel. The results revealed that hydrogel formulations comprising 0.175 M NaHCO3(aq) and 50 wt% water content were the most optimal for physical, chemical, and biological compatibility with the GBM microenvironment on the basis of their swelling characteristics, sufficiently crosslinked polymer networks, degradation rates, viscoelastic properties, and interactions with normal human astrocytes. Loading the hydrogel with 5 µg/mL of CXCL12 was optimal for the slow, sustained release of the chemokine payload. A dual layer hydrogel platform demonstrated in vitro that the resulting chemotactic gradient induced the invasion of GBM cells and GSCs from the extracellular matrix and into the synthetic hydrogel with ameboid migration and myosin IIA activation. This injectable hydrogel also demonstrated direct therapeutic benefits by passively eradicating entrapped GBM cells through matrix diffusion limitations as well as decreasing the GBM malignancy and GSC stemness upon cancer cell-hydrogel interactions. Research findings revealed the hydrogels can be synthesized under clinically relevant conditions mimicking GBM resection in vitro, and hydrogels were distinguishable with ultrasound imaging. Furthermore, the synthetic hydrogel was acoustically active to generate a stable cavitation bubble cloud with histotripsy treatment for ablation of entrapped red blood cells with well-defined, uniform lesion areas. Overall, the results from this research demonstrate this injectable hydrogel is a promising platform to attract and entrap malignant GBM/GSCs for subsequent eradication with chemical and physical stimuli. Further development of this platform, such as by integrating electric cues for electrotaxis-directed cell migration, may help to improve the cancer cell trapping capabilities and thereby mitigate GBM tumor recurrences in patients. / Doctor of Philosophy / Glioblastoma multiforme (GBM) is the deadliest type of primary brain cancer. Upon GBM diagnosis, patients first undergo surgery to remove the tumor from the brain. After waiting several weeks for the wound healing process due to surgery, patients are administered chemotherapy with drugs and radiation therapy to eradicate any remaining GBM cells. Even after undergoing these combinatorial treatments, the cancer returns and leads to median survival times of only 15 months in 90% of patients. Complete GBM eradication is difficult, since the cancer cells can migrate into healthy brain tissue beyond the original tumor site. Additionally, GBM is highly heterogenous and composed of different cell types that can resist chemotherapy and radiation therapy, which lead to secondary tumors and cancer relapse. To address these challenges, this dissertation aimed to develop a polymer-based material (specifically a hydrogel) that can attract, entrap, and localize the GBM cells into the material to subsequently eradicate them with chemical and physical signals. This hydrogel platform would have important clinical implications, as it can potentially be dispensed into the empty cavity after surgical removal of the tumor in the brain. The hydrogel can then be harnessed to attract residual GBM cells for directed migration into the hydrogel to concentrate and localize the cancer cells for their subsequent destruction with a non-invasive technology. In order to develop this proposed treatment, this dissertation investigated the following three aims: 1) to study and optimize the injectable hydrogel for chemical, physical, and biological compatibility with the GBM therapy; 2) to utilize chemical signals to attract and entrap the GBM cells into the hydrogel; and 3) to apply focused ultrasound with high amplitude, short duration negative pressure pulses to mechanically fractionate and destroy the cells entrapped in the hydrogel. The results revealed that the hydrogel comprising 0.175 M NaHCO3(aq) and 50 wt% water content was the most optimal formulation. CXCL12 chemokine proteins loaded into the hydrogel at 5 µg/mL released slowly from the hydrogel to generate a chemical gradient and thereby attract GBM cells to promote their invasion into the hydrogel matrix. The hydrogel was demonstrated to respond well to focused ultrasound treatment, which was capable of mechanically fractionating and destroying red blood cells in the hydrogel uniformly. Overall, the results from this research provide support that this hydrogel platform can attract, entrap, and eradicate GBM cells with chemical and physical stimuli. Hence, further improvement of this platform and implementation of this novel GBM treatment may in the future help minimize GBM cancer relapse in patients who undergo conventional therapies, thereby extending their survival times.
3

Hydrogels injectables et éponges à base de complexe polyélectrolytes (chitosane/polymère de cyclodextrine) pour une application en ingénierie tissulaire osseuse / Injectable hydrogels and sponges based on polyelectrolyte complex (chitosan/ polymer of cyclodextrin) for application in bone tissue engineering

Palomino Durand, Carla 30 April 2019 (has links)
La reparation de defauts osseux par les techniques de l’ingenierie tissulaire osseuse (ITO) est consideree comme une alternative aux greffes conventionnelles. L’objectif de ce projet de these fut de developper des materiaux destines a servir de scaffolds pour le comblement et la regeneration osseuse, ces derniers etant sous la forme d’hydrogels injectables d’une part, et d’eponges, d’autre part. Ces deux types de materiaux ont ete obtenus par melange de chitosane (CHT, cationique), et de polymere de cyclodextrine reticule par l’acide citrique (PCD, anionique), interagissant via des liaisons ioniques et formant des complexes polyélectrolytes. La premiere partie de la these a ete consacree au developpement et caracterisation d’une eponge CHT/PCDs qui a ete chargee avec le facteur de croissance de l’endothelium vasculaire (VEFG) dans le but de favoriser sa vascularisation. Le second volet de la these a eu pour objectif d’optimiser la formulation d’un hydrogel injectable destine a la chirurgie mini-invasive, compose de CHT et de PCD sous sa forme soluble (PCDs) et insoluble (PCDi) [CHT/PCDi/PCDs]. L'etude a ete concentree sur l’optimisation et la caracterisation des proprietes rheologiques de l’hydrogel. Enfin, une etude prospective sur le developpement de l'hydrogel/eponge composite en ajoutant une phase minerale - l'hydroxyapatite (HAp) dans la formulation a ete realisee afin d'ameliorer les proprietes mecaniques et osteoconductrices.L’eponges CHT/PCDs a ratio 3 :3 a ete obtenue par lyophilisation des hydrogels et a subi un traitement thermique (TT) afin d’ameliorer leur stabilite par la formation des liaisons covalentes. L’eponge CHT/PCDs avec un TT a 160°C a montre des proprietes de gonflement eleve (~600%) et une biodegradation ralenti induite par le lysozyme (~12% perte masse dans un mois). Sa microstructure, ses proprietes mecaniques de compression et sa cytocompatibilite avec deux types de cellules (pre-osteoblastes (MC3T3-E1) et endotheliales primaires (HUVECs) ont ete etudiees. Une porosite elevee (~87%) avec des pores interconnectes a ete observee par microtomographie de rayons X, ainsi qu’une bonne adhesion et colonisation cellulaire au sein de l’eponge par microscopie electronique a balayage (MEB). Le VEGF a ete incorpore dans l’eponge, et son profil de liberation a ete suivi, ainsi que la bio-activite du VEGF libere. La liberation du VEGF a ete rapide pendant les trois premiers jours, puis ralenti jusqu'a devenir non-detectable par la methode ELISA jusqu’a 7 jours. Le VEGF libere pendant les deux premiers jours a montre un effet pro-proliferation et pro-migration significatif sur les HUVECs.Les hydrogels injectables de CHT/PCDi/PCDs a differents ratios ont ete optimises et caracterises en fonction de leurs proprietes rheologiques, leur injectabilite, et leur cytotoxicite. L’impact de l’ajoute du PCDi dans l’hydrogel a ete clairement observe par analyses rheologiques Ainsi, l'hydrogel CHT/PCD, compose a parts egales de PCDi et de PCDs, a demontre le meilleur compromis entre stabilite structurelle, proprietes rheofluidifiantes et autoreparantes, et injectabilite. En plus, l’hydrogel a montre une excellente cytocompatibilite vis-avis les cellules pre-osteoblastes MC3T3-E1.Bases sur la formulation optimisee, l’HAp a ete incorporee a differentes concentrations dans l’hydrogel. L’ajout de la phase minerale n’a pas perturbe la formation ni la stabilite structurelle des hydrogels, mais a ameliore les proprietes viscoelastiques. Les eponges composites, elaborees par lyophilisation de ces hydrogels, ont montre que les particules de HAp etaient dispersees de maniere homogene dans la structure macroporeuse de l'eponge. Ces resultats encourageants ont montre qu'il etait possible de fournir un hydrogel injectable ou une eponge composite comme scaffold pour l’ITO [...] / Repair of bone defects by bone tissue engineering (BTE) methods is considered as an alternative to conventional grafts. The aim of this PhD project was to develop two types of BTE scaffolds for bone regeneration: one is in the form of injectable hydrogel, and the other is in the form of sponge. Both scaffolds based on the formation of polyelectrolyte complexes by mixing chitosan (CHT, cationic) and polymer of cyclodextrin (PCD, anionic). Besides developing the sponge scaffold, the vascularization of 3D scaffold (a challenge of BTE) was specially investigated in the first part of the work, for which vascular endothelial growth factor (VEFG) was loaded on the CHT/PCDs sponge to promote the vascularization. The second part of the thesis was dedicated to the elaboration of an injectable CHT/PCD hydrogel, which was intended for minimally invasive surgery. The formulation optimization of hydrogel was performed by tuning the composition ratios of two PCD components: soluble-form PCD (PCDs) and insoluble-form PCD (PCDi), in order to better reach the specific requirement (e.g. rheological properties) of injectable hydrogel for regenerative medicine. Finally, a prospective study on developing the composite hydrogel/sponge by adding a mineral phase - hydroxyapatite (HAp) in the formulation was realized to improve the mechanical and osteoconductive properties.CHT/PCDs sponges were obtained by freeze-drying the hydrogels CHT/PCDs 3:3. The thermal treatment (TT) at different temperatures was further applied on the sponge to improve the mechanical stability. The CHT/PCDs sponge treated at 160°C was opted for further study thanks to high swelling capacity (~ 600%) and moderate lysozyme-induced biodegradation rate in vitro (~ 12% mass loss 21 days). This sponge of choice was further evaluated for the microstructure, the mechanical property (compressive strength) and the cytocompatibility with pre-osteoblasts (MC3T3-E1) and endothelial cells (HUVEC). Results of X-ray microtomography showed a high porosity (~87%) in the sponge with interconnected pores. Good cell adhesion and in-growth (colonization) in the sponge were observed by scanning electron microscopy (SEM). After loading VEGF on the sponge, the release profile of VEGF and the bioactivity of released VEGF were thoroughly studied. It showed that the release of VEGF was rapid (burst) during the first two days, then slowed down up to non-detectable by ELISA method after 7 days. The released VEGF during the first two days showed a significant pro-proliferation and pro-migration effect on HUVECs.For the injectable CHT/PCDi/PCDs hydrogels, optimization of composition ratio was based on evaluating their rheological properties, injectability, and cytotoxicity. The beneficial effect of combining both PCDi and PCDs in the formula of the hydrogel was clearly observed on the properties of hydrogel. Namely, the CHT/PCD hydrogel, composed of equal quantity of PCDi and PCDs, demonstrated the best compromise between structural stability, shearthinning and self-healing properties, and injectability. An excellent cytocompatibility with preosteoblast cells (MC3T3-E1) was also confirmed for the hydrogel with this composition.Based on the optimized formulation, HAp was incorporated at different concentrations, which didn’t disturb the formation or the structural stability of the hydrogels, but improved the viscoelastic properties. The composite sponges, elaborated by lyophilization of these hydrogels, showed that the HAp particles homogeneously dispersed within the macroporous structure of the sponge. These encouraging results showed the feasibility of providing an injectable hydrogel or a composite sponge for BTE scaffold [...]
4

Osteogenic Potential of Mesenchymal Stem Cells from Adipose Tissue, Bone Marrow and Hair Follicle Outer Root Sheath in a 3D Crosslinked Gelatin-Based Hydrogel

Li, Hanluo, Nawaz, Hafiz Awais, Masieri, Federica Francesca, Vogel, Sarah, Hempel, Ute, Bartella, Alexander K., Zimmerer, Rüdiger, Simon, Jan-Christoph, Schulz-Siegmund, Michaela, Hacker, Michael, Lethaus, Bernd, Savković, Vuk 19 December 2023 (has links)
Bone transplantation is regarded as the preferred therapy to treat a variety of bone defects. Autologous bone tissue is often lacking at the source, and the mesenchymal stem cells (MSCs) responsible for bone repair mechanisms are extracted by invasive procedures. This study explores the potential of autologous mesenchymal stem cells derived from the hair follicle outer root sheath (MSCORS). We demonstrated that MSCORS have a remarkable capacity to differentiate in vitro towards the osteogenic lineage. Indeed, when combined with a novel gelatin-based hydrogel called Osteogel, they provided additional osteoinductive cues in vitro that may pave the way for future application in bone regeneration. MSCORS were also compared to MSCs from adipose tissue (ADMSC) and bone marrow (BMMSC) in a 3D Osteogel model. We analyzed gel plasticity, cell phenotype, cell viability, and differentiation capacity towards the osteogenic lineage by measuring alkaline phosphatase (ALP) activity, calcium deposition, and specific gene expression. The novel injectable hydrogel filled an irregularly shaped lesion in a porcine wound model displaying high plasticity. MSCORS in Osteogel showed a higher osteo-commitment in terms of calcium deposition and expression dynamics of OCN, BMP2, and PPARG when compared to ADMSC and BMMSC, whilst displaying comparable cell viability and ALP activity. In conclusion, autologous MSCORS combined with our novel gelatin-based hydrogel displayed a high capacity for differentiation towards the osteogenic lineage and are acquired by non-invasive procedures, therefore qualifying as a suitable and expandable novel approach in the field of bone regeneration therapy
5

Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration

Kohn-Polster, Caroline, Bhatnagar, Divya, Woloszyn, Derek J., Richtmyer, Matthew, Starke, Annett, Springwald, Alexandra H., Franz, Sandra, Schulz-Siegmund, Michaela, Kaplan, Hilton M., Kohn, Joachim, Hacker, Michael C. 21 December 2023 (has links)
Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.

Page generated in 0.0431 seconds