• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 15
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 118
  • 118
  • 18
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Adaptive process control for stabilizing the production process in injection moulding machines

Schiffers, Reinhard, Holzinger, Georg P., Huster, Gernot 02 May 2016 (has links) (PDF)
Plastic injection moulding machines are a positive example of the possibilities in terms of performance and energy efficiency of modern hydraulic drives technology. In addition to the performance and energy efficiency of the machines, the quality of the plastic mouldings and an easy to use machines control is the focus. To ensure a constant plastics part quality the set process parameters of the injection moulding machines are kept constant by appropriate closed loop control strategies today. Assuming a constant quality of the processed plastic raw material, this strategy is effective. If it comes to a qualitative variation in the processed plastics, which often leads to a change in viscosity of the plastics melt, keeping processing parameters constant will not lead to a constant quality of the moulded parts. The deviations in the plastics viscosity have such a great influence on the moulding process that the relevant process parameters have to be adjusted manually in many cases. Often the stroke of the reciprocating screw system has to be adapted to reach a constant filling volume of the cavity and therefore avoid burr formation or short shots. In this paper an approach for adaptive process control is introduced. This control loop is able to correct the set points of specific machines parameters online within the production cycle and therefore is able to avoid changes in the produced parts quality.
22

Comparison of crystallization characteristics and mechanical properties of polypropylene processed by ultrasound and conventional micro injection molding

Masato, Davide, Babenko, Maksims, Shriky, Banah, Gough, Timothy D., Lucchetta, G., Whiteside, Benjamin R. 01 August 2018 (has links)
Yes / Ultrasound injection molding has emerged as an alternative production route for the manufacturing of micro-scale polymeric components, where it offers significant benefits over the conventional micro-injection molding process. In this work, the effects of ultrasound melting on the mechanical and morphological properties of micro-polypropylene parts were characterized. The ultrasound injection molding process was experimentally compared to the conventional micro-injection molding process using a novel mold, which allows mounting on both machines and visualization of the melt flow for both molding processes. Direct measurements of the flow front speed and temperature distributions were performed using both conventional and thermal high-speed imaging techniques. The manufacturing of micro-tensile specimens allowed the comparison of the mechanical properties of the parts obtained with the different processes. The results indicated that the ultrasound injection molding process could be an efficient alternative to the conventional process.
23

Combining additive fabrication and conventional machining technologies to develop a hybrid tooling approach

Booysen, G., Truscott, M., Mosimanyane, D., De Beer, D. January 2009 (has links)
Published Article / South Africa is constantly loosing contracts for the manufacturing of innovative projects to the East, due to its non-competitive mould-making industry. The paper will report on progress made in a specific focus area in mould-making, namely Hybrid Moulds for injection moulding. Hybrid Moulds refers to a hybrid between Additive Fabrication and conventional methods through the use of amongst others, Direct Metal Laser Sintering techniques, combined with conventional CNC machining (High Speed) techniques. Although the emphasis is on an economically viable process for limited production runs, once the moulds have been developed, it normally is pushed to its limits to realize production quantities. One of the competitive edges is the cutting of lead-times, which obviously impacts on production costs. Another aspect is the ability to manufacture short runs of injection moulded parts in the required engineering material Realising that Laser Sintering of metals is an expensive manufacturing process, a concurrent manufacturing process was developed. Intricate mould details, which normally are time-consuming to manufacture through EDM processes, were grown as inserts, while the less-complex parts of the mould is machined in Aluminium through 3 and 5 Axis High Speed CNC Machining. Using a 3-axis CNC wire cutter, pockets will be created where the more complex Laser Sintered Metal inserts will be fitted. One of the competitive edges is the cutting of lead-times, which obviously impacts on production costs. Another aspect is the ability to manufacture short runs of injection moulded parts in the required engineering material.
24

Component and die design principles and process parameters for the metal injection moulding of a Ti alloy

Pereira, M.F.V.T., Benson, J.M., Williams, M., Chikwanda, H. January 2010 (has links)
Published Article / Metal injection moulding (MIM) offers advantages for mass production of components over conventional production methods for parts with complex shapes and large production runs. The MIM process includes mixing a fine metallic powder with a polymeric binder to produce a homogeneous feedstock. This enables the production of metallic components in a similar manner to plastic injection moulding. After undergoing a process of binder removal the components undergo a conventional sintering cycle. As significant shrinkage occurs (as much as 30%) this must be considered when designing the die cavity. This paper describes the design and manufacture of a die to produce tensile specimens. Extensive injection moulding trials to produce acceptable tensile components were undertaken. The complexities and possible implications of the design of a mould on the process are discussed. The outcomes of this research will be used by the CSIR for further development and application of the MIM technology for manufacture of high value components, such as dental implants.
25

Mechanical durability of hydrophobic surfaces fabricated by injection moulding of laser-induced textures

Romano, J.-M., Gulcur, Mert, Garcia-Giron, A., Martinez-Solanas, E., Whiteside, Benjamin R., Dimov, S.S. 23 January 2020 (has links)
Yes / The paper reports an investigation on the mechanical durability of textured thermoplastic surfaces together with their respective wetting properties. A range of laser-induced topographies with different aspect ratios from micro to nanoscale were fabricated on tool steel inserts using an ultrashort pulsed near infrared laser. Then, through micro-injection moulding the topographies were replicated onto polypropylene surfaces and their durability was studied systematically. In particular, the evolution of topographies on textured thermoplastic surfaces together with their wetting properties were investigated after undergoing a controlled mechanical abrasion, i.e. reciprocating dry and wet cleaning cycles. The obtained empirical data was used both to study the effects of cleaning cycles and also to identify cleaning procedures with a minimal impact on textured thermoplastic surfaces and their respective wetting properties. In addition, the use of 3D areal parameters that are standardised and could be obtained readily with any state-of-the-art surface characterisation system are discussed for monitoring the surfaces’ functional response. / The full-text of this article will be released for public view at the end of the publisher embargo on 23 Jan 2020.
26

Design vstřikovacího lisu / Design of machine for injection molding

Multáňová, Katarína January 2010 (has links)
Diploma thesis deals with the development of injection moulding machine design. It is a type of industrial machine, which is designed for production of plastic parts by technology of compression molding. Injection and closing units in the machine are vertical orientated to each other. Injection moulding machine is equipped with rotary table. The main task of diploma work is to design an injection moulding machine with original shape for the future. Conception of the machine is based on present progresive technical solutions. Design of the machine tolerates main ergonomic demands and make the work for operating personnel easier.
27

Mechanical durability of hydrophobic surfaces fabricated by injection moulding of laser-induced textures

Romano, J.-M., Gülçür, Mert,, Garcia-Giron, A., Martinez-Solanas, E., Whiteside, Benjamin R., Dimov, S.S. 22 January 2019 (has links)
Yes / The paper reports an investigation on the mechanical durability of textured thermoplastic surfaces together with their respective wetting properties. A range of laser-induced topographies with different aspect ratios from micro to nanoscale were fabricated on tool steel inserts using an ultrashort pulsed near infrared laser. Then, through micro-injection moulding the topographies were replicated onto polypropylene surfaces and their durability was studied systematically. In particular, the evolution of topographies on textured thermoplastic surfaces together with their wetting properties were investigated after undergoing a controlled mechanical abrasion, i.e. reciprocating dry and wet cleaning cycles. The obtained empirical data was used both to study the effects of cleaning cycles and also to identify cleaning procedures with a minimal impact on textured thermoplastic surfaces and their respective wetting properties. In addition, the use of 3D areal parameters that are standardised and could be obtained readily with any state-of-the-art surface characterisation system are discussed for monitoring the surfaces' functional response. / European Commission H2020 ITN programme “European ESRs Network on Short Pulsed Laser Micro/Nanostructuring of Surfaces for Improved Functional Applications” (Laser4Fun) under the Marie Skłodowska-Curie grant agreement No. 675063 (www.laser4fun.eu) and the UKIERI DST programme “Surface functionalisation for food, packaging, and healthcare applications”. In addition, the work was supported by three other H2020 programmes, i.e. the projects on “Modular laser based additive manufacturing platform for large scale industrial applications” (MAESTRO), “High-Impact Injection Moulding Platform for mass-production of 3D and/or large micro-structured surfaces with Antimicrobial, Self-cleaning, Anti-scratch, Anti-squeak and Aesthetic functionalities” (HIMALAIA) and “Process Fingerprint for Zero-defect Net-shape Micromanufacturing” (MICROMAN).
28

Thin-wall injection molding of polystyrene parts with coated and uncoated cavities

Masato, Davide, Sorgato, M., Babenko, Maksims, Whiteside, Benjamin R., Lucchetta, G. 29 December 2017 (has links)
Yes / The paper reports an investigation on the mechanical durability of textured thermoplastic surfaces together with their respective wetting properties. A range of laser-induced topographies with different aspect ratios from micro to nanoscale were fabricated on tool steel inserts using an ultrashort pulsed near infrared laser. Then, through micro-injection moulding the topographies were replicated onto polypropylene surfaces and their durability was studied systematically. In particular, the evolution of topographies on textured thermoplastic surfaces together with their wetting properties were investigated after undergoing a controlled mechanical abrasion, i.e. reciprocating dry and wet cleaning cycles. The obtained empirical data was used both to study the effects of cleaning cycles and also to identify cleaning procedures with a minimal impact on textured thermoplastic surfaces and their respective wetting properties. In addition, the use of 3D areal parameters that are standardised and could be obtained readily with any state-of-the-art surface characterisation system are discussed for monitoring the surfaces' functional response.
29

An approximation to the PTT viscoelastic model for Gas Assisted Injection Moulding simulation

Olley, Peter 06 February 2020 (has links)
Yes / An approximation to the Phan-Thien Tanner (PTT) constitutive model is developed with the aim of giving low-cost simulation of Gas Assisted Injection Moulding (GAIM) while incorporating important viscoelastic characteristics. It is shown that the developed model gives a response typical of full viscoelastic models in transient and steady state uniaxial and constant shear rate deformations. The model is incorporated into a 3D finite element GAIM simulation which uses the ‘pseudo-concentration’ method to predict residual polymer, and applied to published experimental results for a Boger fluid and a shear-thinning polystyrene melt. It is shown that the simulation gives a very good match to published results for the Boger fluid which show increasing Residual Wall Thickness (RWT) with increasing Deborah number. Against the shear-thinning polymer, the quality of match depends upon which of two ‘plausible’ relaxation times is chosen; qualitatively different results arise from two different means of estimating a single relaxation time. A ‘multi-mode’ approach is developed to avoid this uncertainty. It is shown that the multi-mode approach gives decreasing RWT with increasing Deborah number in agreement with the published experimental results, and avoids the issues that arise from estimating a single relaxation time for a molten polymer.
30

Effects of mould wear on hydrophobic polymer surfaces replicated using plasma treated and laser-textured stainless steel inserts

Dimov, Stefan, Romano, J.-M., Sarasa, J.F., Concheso, C., Gülçür, Mert,, Dashtbozorg, B., Garcia-Giron, A., Penchev, P., Dong, H., Whiteside, Benjamin R. 12 July 2020 (has links)
Yes / The mass production of polymeric parts with functional surfaces requires economically viable manufacturing routes. Injection moulding is a very attractive option however wear and surface damage can be detrimental to the lifespan of replication masters. In this research, the replication of superhydrophobic surfaces is investigated by employing a process chain that integrates surface hardening, laser texturing and injection moulding. Austenitic stainless steel inserts were hardened by low temperature plasma carburising and three different micro and nano scale surface textures were laser fabricated, i.e. submicron triangular LaserInduced Periodic Surface Structures (LIPSS), micro grooves and Lotus-leaf like topographies. Then, a commonly available talc-loaded polypropylene was used to produce 5000 replicas to investigate the evolution of surface textures on both inserts and replicas together with their functional response. Any wear orsurface damage progressively built up on the inserts during the injection moulding process had a clear impact on surface roughness and peak-to-peak topographies of the replicas. In general, the polymer replicas produced with the carburised inserts retained the wetting properties of their textured surfaces for longer periods compared with those produced with untreated replication masters. / European Union’s H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 675063 (www.laser4fun.eu). The work was also supported by three other H2020 projects, i.e. “HighImpact Injection Moulding Platform for mass-production of 3D and/or large micro-structured surfaces with Antimicrobial, Self-cleaning, Anti-scratch, Anti-squeak and Aesthetic functionalities” (HIMALAIA, No. 766871), “Process Fingerprint for Zero-defect Net-shape Micromanufacturing” (MICROMAN, No. 674801) and “Modular laser based additive manufacturing platform for large scale industrial applications” (MAESTRO, No. 723826). Further support was provided by the UKIERI DST programme “Surface functionalisation for 18/20 Accepted in the journal Tribology – Materials, Surfaces & Interfaces. food, packaging, and healthcare applications”

Page generated in 0.4658 seconds