• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelles méthodes de synthèse de texture ; application à la prédiction et à l'inpainting d'images

Turkan, Mehmet 19 December 2011 (has links) (PDF)
Cette thèse présente de nouvelles méthodes de synthèse de texture basées sur l'exemple pour les problèmes de prédiction d'images (c'est à dire, codage prédictif) et d'inpainting d'images. Les principales contributions de cette étude peuvent aussi être vues comme des extensions du template matching. Cependant, le problème de synthèse de texture tel que nous le définissons ici se situe plutôt dans un contexte d'optimisation formalisée sous différentes contraintes. Le problème de prédiction d'images est d'abord situé dans un contexte de représentations parcimonieuses par l'approximation du template sous contraintes de parcimonie. La méthode de prédiction proposée avec les dictionnaires adaptés localement montrent de meilleures performances par rapport aux dictionnaires classiques (tels que la transformée en cosinus discrète (TCD)), et à la méthode du template matching. Le problème de prédiction d'images est ensuite placé dans un cadre d'apprentissage de dictionnaires en adaptant les méthodes traditionnelles d'apprentissage pour la prédiction de l'image. Les observations expérimentales montrent une meilleure performance comparativement à des méthodes de prédiction parcimonieuse et des prédictions intra de type H.264/AVC. Enfin un cadre neighbor embedding est proposé pour la prédiction de l'image en utilisant deux méthodes de réduction de dimensionnalité: la factorisation de matrice non négative (FMN) et le locally linear embedding (LLE). Ce cadre est ensuite étendu au problème d'inpainting d'images. Les évaluations expérimentales démontrent l'efficacité des idées sous-jacentes pour la compression via la prédiction d'images et l'inpainting d'images.

Page generated in 0.0739 seconds