• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Digestão ácida em diptera superiores / Acid digestion in higher Diptera

Almeida, Érika Hotz 10 March 2003 (has links)
Insetos abrangem o maior número de espécies descritas, estando distribuídos por praticamente todos os nichos ecológicos. O tubo digestivo destes animais consiste na principal interface entre estes e o meio externo. Assim, o estudo das enzimas digestivas, ou proteínas relacionadas ao processo digestivo em insetos, faz-se fundamental para a tentativa de desenvolver novos métodos de controle que ajam via canal alimentar, como o uso de plantas transgênicas para controlar insetos fitófagos (Felton & Gatehouse, 1996). Diptera superiores são os únicos animais, além dos vertebrados, que apresentam uma região ácida em seu intestino médio (Vonk & Western, 1984). Assim, o estudo da digestão ácida nestes organismos permite-nos examinar em detalhe este interessante paralelismo evolutivo (muito revelador se incluir também aspectos moleculares). Para realização deste estudo foram escolhidas duas enzimas relacionadas com a digestão ácida em Diptera: uma aspártico-proteinase de Musca domestica, semelhante à catepsina D, e uma lisozima digestiva de Drosophila melanogaster. Para purificar a aspártico-proteinase intestinal de M. domestica, ventrículos anterior e médio de larvas deste inseto foram homegeneizados e centrifugados, sendo o sobrenadante resultante utilizado como fonte de enzima. A combinação de uma cromatografia em coluna de troca iônica seguida de uma filtração em gel mostrou-se como a melhor para a obtenção da aspártico-proteinase intestinal de larvas de M. domestica totalmente purificada. Clones de lisozima de D. melanogaster (LysD) e de A. darlingi (Lysdar) foram utilizados na construção de vetores de expressão a seguir usados na transformação de E. coli linhagem OrigamiTMB (DE3) e P. Pastoris GS115 (his4). As bactérias transformadas com vetor pT7-dar (que continha o gene Lysdar), quando induzidas por IPTG, foram capazes de expressar uma proteína, cujo peso molecular em gel de SDS-PAGE é de cerca de 14 kDa, como o esperado. A lisozima hipotética foi encontrada em corpos de inclusão, que solubilizados por SDS 3% resultaram em proteína inativa. Colônias de P. pastoris transformadas com o vetor pPIC-9-D (contendo o gene LysD) foram submetidas a reação em cadeia com DNA polimerase. Aquelas que geraram produtos de PCR de tamanho coerente com o de uma lisozima foram cultivadas e posteriormente, induzidas por metanol. P. pastoris é capaz de secretar a lisozima induzida. Assim, alíquotas do meio de indução foram utilizadas em ensaios enzimáticos para a detecção da atividade da lisozima intestinal de D. melanogaster. A lisozima é expressa em P. pastoris em grande quantidade (12 mg/L) e com atividade preservada. Foi verificado que há uma intima relação entre a força iônica do meio e o pH ótimo da lisozima intestinal recombinante de D. melanogaster. O pH ótimo é deslocado para valores mais ácidos quando em forças iônicas maiores. Em contrapartida, os valores de atividade obtidos para a lisozima D recombinante de D. melanogaster decrescem com o aumento da força iônica do meio. / Insects are the most numerous of living beings and are found in almost all habitats. The midgut of these animals is the main interface between them and their enviroment. Thus, the study of digestive enzymes or of other proteins relateded to the insect digestive process is putatively useful for the development of new insect control strategies. Houseflies (higher Diptera) are the only animals, besides vertebrates, that present an acidic region in the midgut (Vonk & Western, 1984). Due do that, a detailed analysis of the acidic digestion in these insects may disclose molecular evolutionary paralellisms between those animals. Two enzymes were chosen along the aims discussed: a Musca domestica aspartic-proteinase, similar to cathepsin D and a digestive lysozyme from Drosophila melanogaster. To purify the cathepsin D-like proteinase from M. domestica larvae, larval foreguts and midguts were homogeneized, centrifuged, and the resulting supernatant was used as an enzyme source. Ion-exchange chromatography followed by a gel filtration of enzyme extract resulted in a homogeneous preparation of the enzyme. Clones of lysozyme from D. melanogaster (LysD) and A. darling (Lysdar) were used in the construction of expression vectors, which were used to transform E. coli cells (OrigamiTM B(DE3)) and P. pastoris GS115 (his4). Bacteria transformed with pT7-dar (the expression vector which contained the gene Lysdar), when induced by IPTG, expressed a protein with a molecular weight of 14 kDa, as expected for lysozyme. This protein was found in inclusion bodies that were solubilized in 3% SDS resulting in a protein with no activity. After choosing at random P. pastoris colonies transformed with the expression vector pPIC9-D (containing the gene LysD), they were submited to a PCR. The colonies with 366pb products were grown and induced by methanol. P. pastoris was engineered to excrete the expressed proteins. In accordance to that, about 12 mg of lysozyme were recovered from each litter of culture medium. Recombinant D. melanogaster lysozyme D was more active at acid pH values, when present in media with physiological ionic strengths, and its Km value increased with the ionic strength of media. This is agreement with data obtained with lysozyme D isolated from D. melanogaster midgut. The results support the assertion that this enzyme may be used in crystalographic and site mutagenesis studies to reveal the molecular basis of its catalytic properties.
2

Caracterização da trealase intestinal da larva Tenebrio molitor e clonagem do cDNA que a codifica / Characterization of intestinal trehalase of the larvae Tenebrio molitor and cloning of cDNA that encodes

Duran, Ana Gilhema Gomez 14 October 2005 (has links)
A trealase intestinal de Tenebrio molitor foi purificada após três etapas cromatográficas (interação hidrofóbica, troca iônica e gel filtração), obtendo-se uma recuperação de 46 %, uma atividade específica de 16,5 U/mg de proteína e um enriquecimento de 73 vezes. A proteína purificada apresenta uma massa molecular de 58 kDa estimada por plotes de Ferguson, pH ótimo de 5,3 e Km de 0,43 ± 0,03 mM. Estudos de inibição com a enzima purificada mostraram que a mesma é inibida competitivamente por amigdalina (Ki = 0,22 mM), prunasina (Ki = 0,43 mM), florizina (Ki = 0,50 mM), floretina (Ki = 0,008 mM), metil-α-manosídeo (Ki = 0,43 mM), salicina (Ki = 186 mM), e glucono-δ-lactona (Ki = 1,4 mM). Mandelonitrila apresentou inibição mista com Ki = 3,8 e -α = 1,5. A enzima não apresentou inibição por 1,10 fenantrolina, gentibiose, metil-α-glucosídeo e Tris, em concentração de mM, 10 mM, 200mM, e 264 Mm, respectivamente. Experimentos de inibição, inibição múltipla e de proteção da enzima contra modificadores de resíduos específicos de aminoácidos permitiram idealizar um esquema para o sítio ativo da trealase. Esse sítio ativo teria dois sítios assimétricos para a ligação de glicose. Em um dos sub-sítios liga-se o inibidor floritina e no outro os inibidores metil-α-manosídeo e glucono-δ-lactona. Nesse último está presente um resíduo de histidina que tem como papel modular o pKa do carboxilato catalítico. Esse e o resíduo de arginina que atua como doador de prótons, encontra-se na região entre os dois sub-sítios. RT-PCR foi usado para clonar o cDNA codifica a trealase intestinal de T. molitor. Esta proteína é solúvel e apresenta massa molecular prevista pela sequência de 61 kDa. Tomando por base a seqüência de aminoácidos, esta trealase pode ser classificada na família 37 das glicosídeo hidrolases e faz parte do clã G, onde não se conhecem quais são os grupos envolvidos em catálise e nem a estrutura tridimensional de seus componentes. / Intestinal trehalase was purified from Tenebrio molitor larvae after three chromatographic steps (hidrophobic, interaction, ion exchange chromatography and gel filtration). The pure enzyme has an specific activity of 16.5 U/mg, molecular mass of 58 kDa, optimum pH of 5.3 and Km of 0.43 ± 0.03 mM. Amygdalin (Ki = 0.22 mM), prunasin (Ki = 0.43 mM), phlorizin (Ki = 0.50 mM), phloretin (Ki = 0.008 mM), methyl-α-mannoside (Ki = 43 mM), salicin (Ki = 186 mM), and glucone-δ-lactone (Ki = 1.4 mM) are competitive inhibitors of the enzyme. Mandelonitrile (the aglycon of the glucosides amygdalin and prunasin) is a non-competitive mixed-type inhibitor (Ki = 3.8 mM and α = 1.5). Gentiobiose, methyl-α-glucoside, 1,10 phenanthroline and Tris in concentrations of 10 mM, 200 mM, 4 mM, and 264 mM, respectively, were unable to inhibit the enzyme. We designed a model for trehalase active site, taking into account inhibition and multiple inhibition experiments plus protection afforded by competitive inhibitors against the chemical modification of amino acid residues. The site has two assimetric subsites for glucose binding. Phloretin binds to subsite II and methyl-α-mannoside and glucone-δ-lactone bind to subsite I. In this subsite, one His residue modulates the p(Ka of the carboxylate group that acts as a nucleophile in catalysis. The carboxylate and one Arg residue, that acts as a proton donor, are placed in the region between the two subsites. Using RT-PCR techniques, the cDNA coding for T. molitor intestinal trehalase was cloned. From the sequence, we can suppose that the enzyme is soluble and calculate that the molecular mass of the protein would be 61 kDa. T. molitor trehalase can be classified as a member of family 37 of glycoside hydrolases. No member of this family has their catalytical groups nor its 3D structure known.
3

Caracterização da trealase solúvel de Spodoptera frugiperda (Lepidoptera) / Characterization of the soluble trehalase of Spodoptera frugiperda (Lepidoptera)

Maria Cicera Pereira da Silva 25 February 2003 (has links)
No epitélio do intestino médio de S. frugiperda encontra-se 90% da atividade de trealase solúvel. A trealase solúvel foi purificada até a homogeneidade por uma série de passos cromatográficos. A enzima possui um sítio hidrofóbico adjacente ao sítio ativo. Mudanças conformacionais aparentemente ocorrem quando metil-a-glicosídeo liga-se ao sítio ativo. A trealase solúvel é inibida competitivamente por amigdalina (Ki=0,21 mM), prunasina (Ki=0,92 mM), mandelonitrila (Ki = 1,14 mM), metil-α-glicosídeo (Ki=89 mM), metil-α-manosídeo (Ki=6,2 mM )e salicina (Ki= 19 mM). Florizina é um inibidor acompetitivo hiperbólico da trealase solúvel (Ki=0,087 mM, α =β =0,35) e seu aglicone floretina é um inibidor não competitivo (Ki=0,029 mM). Tris e mandelonitrila ligam-se a regiões diferentes da enzima enquanto mandelonitrila e floretina não podem ligar-se concomitantemente à enzima. Os pKs da enzima livre (pKe) e do complexo enzima substrato (pKes) foram determinados a partir de valores de Km e Vmáx/Km obtidos em vários pHs. Os valores encontrados foram: pKe1=4,47; pKe2=8,0l ; pKes1=4,83; pKes2=7,59. A trealase solúvel não perde a atividade quando incubada com reagentes que modificam grupos sufidrila, thiol e fenol. Com modificador de grupo imidazol, a enzima perde 60% da atividade somente na presença de metil-α-glucosídeo (inibidor competitivo da trealase). Essa modificação é protegida por trealose, indicando a presença de uma Histidina não essencial para catálise. Modificadores de grupo carboxila e guanidino inativam a enzima, com pKs de, respectivamente, 4,87 e 7,84. a similaridade desses pKs com os determinados cineticamente sugere que os resíduos envolvidos em catálise são uma arginina e um asparto ou glutamato. β-glicosídeos tóxicos produzidos por plantas e seus aglicones inibem trealoses presentes em diferentes órgãos de várias ordens de insetos. Essa inibição foi menor em insetos que se alimentam somente de vegetais, provavelmente devido a uma adaptação desses organismos. / The epithelium of S. frugiperda midgut has a trehalase activity that is mainly soluble (90%). The soluble trehalase was purified by several chromatographic steps. The enzyme has an hydrophobic site near the active site. Conformational changes apparently occur in the enzyme when methyl-α-glucoside binds to the active site. Trehalase has a Km=0.37 mM and is a competitively inhibited by methyl-α-glucoside (Ki=89 mM); methyl-α-mannosideo (Ki=6.2 mM); amygdalin (Ki=0.21); prunasin (Ki=0.92 mM); mandelonitrile (Ki=l.14 mM); Tris (Ki=0.55 mM) and salicin (Ki=l9 mM). Phlorizin is an hyperbolic acompetitive inhibitor (α=β=0.35; Ki=0.0087 mM), whereas its aglycon, phloretin, is a non-competitive inhibitor (Ki=0.029 mM). Tris and mandelonitrile bind at the same region in the active site. On the other hand, mandelonitrile and phloretin cannot be bound to the enzyme at the same time. Enzyme pKs (pKe) and enzyme substrate pKs (pKes) were determined from Km and Vmax/Km values obtained at different pHs. The values are: pKe1=4.47; pKe2=8.0l ; pKes1=4.83; pKes2=7.59. Trehalase is not inactivated when incubated with compounds that react with thiol, imidazole or phenol groups. Trealase lose 60% of its activity in the presence of methyl-α-glucoside (acompetitive inhibitor) plus a compound that reacts with imidazole groups. This inactivation is decreased by trehalose, indicating that there is a non-essential histidine in the active site substances that react with carboxyl guanidine groups inactivate the enzyme. The modified groups have pH of respectively, 4.87 and 7.84. The resemblance of these pKs with the one determined from Km and Vmax values suggest that the prototropic groups of the enzyme are in residues of arginine and aspartic acid or glutamic acid. Toxic β-glucosides from plants and their aglycons inhibit trealase from different organs of insects from several orders. This inhibition is lower in herbivorous insects, possibly due to their adaptation in ingesting vegetal tissues.
4

Caracterização da trealase solúvel de Spodoptera frugiperda (Lepidoptera) / Characterization of the soluble trehalase of Spodoptera frugiperda (Lepidoptera)

Silva, Maria Cicera Pereira da 25 February 2003 (has links)
No epitélio do intestino médio de S. frugiperda encontra-se 90% da atividade de trealase solúvel. A trealase solúvel foi purificada até a homogeneidade por uma série de passos cromatográficos. A enzima possui um sítio hidrofóbico adjacente ao sítio ativo. Mudanças conformacionais aparentemente ocorrem quando metil-a-glicosídeo liga-se ao sítio ativo. A trealase solúvel é inibida competitivamente por amigdalina (Ki=0,21 mM), prunasina (Ki=0,92 mM), mandelonitrila (Ki = 1,14 mM), metil-α-glicosídeo (Ki=89 mM), metil-α-manosídeo (Ki=6,2 mM )e salicina (Ki= 19 mM). Florizina é um inibidor acompetitivo hiperbólico da trealase solúvel (Ki=0,087 mM, α =β =0,35) e seu aglicone floretina é um inibidor não competitivo (Ki=0,029 mM). Tris e mandelonitrila ligam-se a regiões diferentes da enzima enquanto mandelonitrila e floretina não podem ligar-se concomitantemente à enzima. Os pKs da enzima livre (pKe) e do complexo enzima substrato (pKes) foram determinados a partir de valores de Km e Vmáx/Km obtidos em vários pHs. Os valores encontrados foram: pKe1=4,47; pKe2=8,0l ; pKes1=4,83; pKes2=7,59. A trealase solúvel não perde a atividade quando incubada com reagentes que modificam grupos sufidrila, thiol e fenol. Com modificador de grupo imidazol, a enzima perde 60% da atividade somente na presença de metil-α-glucosídeo (inibidor competitivo da trealase). Essa modificação é protegida por trealose, indicando a presença de uma Histidina não essencial para catálise. Modificadores de grupo carboxila e guanidino inativam a enzima, com pKs de, respectivamente, 4,87 e 7,84. a similaridade desses pKs com os determinados cineticamente sugere que os resíduos envolvidos em catálise são uma arginina e um asparto ou glutamato. β-glicosídeos tóxicos produzidos por plantas e seus aglicones inibem trealoses presentes em diferentes órgãos de várias ordens de insetos. Essa inibição foi menor em insetos que se alimentam somente de vegetais, provavelmente devido a uma adaptação desses organismos. / The epithelium of S. frugiperda midgut has a trehalase activity that is mainly soluble (90%). The soluble trehalase was purified by several chromatographic steps. The enzyme has an hydrophobic site near the active site. Conformational changes apparently occur in the enzyme when methyl-α-glucoside binds to the active site. Trehalase has a Km=0.37 mM and is a competitively inhibited by methyl-α-glucoside (Ki=89 mM); methyl-α-mannosideo (Ki=6.2 mM); amygdalin (Ki=0.21); prunasin (Ki=0.92 mM); mandelonitrile (Ki=l.14 mM); Tris (Ki=0.55 mM) and salicin (Ki=l9 mM). Phlorizin is an hyperbolic acompetitive inhibitor (α=β=0.35; Ki=0.0087 mM), whereas its aglycon, phloretin, is a non-competitive inhibitor (Ki=0.029 mM). Tris and mandelonitrile bind at the same region in the active site. On the other hand, mandelonitrile and phloretin cannot be bound to the enzyme at the same time. Enzyme pKs (pKe) and enzyme substrate pKs (pKes) were determined from Km and Vmax/Km values obtained at different pHs. The values are: pKe1=4.47; pKe2=8.0l ; pKes1=4.83; pKes2=7.59. Trehalase is not inactivated when incubated with compounds that react with thiol, imidazole or phenol groups. Trealase lose 60% of its activity in the presence of methyl-α-glucoside (acompetitive inhibitor) plus a compound that reacts with imidazole groups. This inactivation is decreased by trehalose, indicating that there is a non-essential histidine in the active site substances that react with carboxyl guanidine groups inactivate the enzyme. The modified groups have pH of respectively, 4.87 and 7.84. The resemblance of these pKs with the one determined from Km and Vmax values suggest that the prototropic groups of the enzyme are in residues of arginine and aspartic acid or glutamic acid. Toxic β-glucosides from plants and their aglycons inhibit trealase from different organs of insects from several orders. This inhibition is lower in herbivorous insects, possibly due to their adaptation in ingesting vegetal tissues.
5

Caracterização da trealase intestinal da larva Tenebrio molitor e clonagem do cDNA que a codifica / Characterization of intestinal trehalase of the larvae Tenebrio molitor and cloning of cDNA that encodes

Ana Gilhema Gomez Duran 14 October 2005 (has links)
A trealase intestinal de Tenebrio molitor foi purificada após três etapas cromatográficas (interação hidrofóbica, troca iônica e gel filtração), obtendo-se uma recuperação de 46 %, uma atividade específica de 16,5 U/mg de proteína e um enriquecimento de 73 vezes. A proteína purificada apresenta uma massa molecular de 58 kDa estimada por plotes de Ferguson, pH ótimo de 5,3 e Km de 0,43 ± 0,03 mM. Estudos de inibição com a enzima purificada mostraram que a mesma é inibida competitivamente por amigdalina (Ki = 0,22 mM), prunasina (Ki = 0,43 mM), florizina (Ki = 0,50 mM), floretina (Ki = 0,008 mM), metil-α-manosídeo (Ki = 0,43 mM), salicina (Ki = 186 mM), e glucono-δ-lactona (Ki = 1,4 mM). Mandelonitrila apresentou inibição mista com Ki = 3,8 e -α = 1,5. A enzima não apresentou inibição por 1,10 fenantrolina, gentibiose, metil-α-glucosídeo e Tris, em concentração de mM, 10 mM, 200mM, e 264 Mm, respectivamente. Experimentos de inibição, inibição múltipla e de proteção da enzima contra modificadores de resíduos específicos de aminoácidos permitiram idealizar um esquema para o sítio ativo da trealase. Esse sítio ativo teria dois sítios assimétricos para a ligação de glicose. Em um dos sub-sítios liga-se o inibidor floritina e no outro os inibidores metil-α-manosídeo e glucono-δ-lactona. Nesse último está presente um resíduo de histidina que tem como papel modular o pKa do carboxilato catalítico. Esse e o resíduo de arginina que atua como doador de prótons, encontra-se na região entre os dois sub-sítios. RT-PCR foi usado para clonar o cDNA codifica a trealase intestinal de T. molitor. Esta proteína é solúvel e apresenta massa molecular prevista pela sequência de 61 kDa. Tomando por base a seqüência de aminoácidos, esta trealase pode ser classificada na família 37 das glicosídeo hidrolases e faz parte do clã G, onde não se conhecem quais são os grupos envolvidos em catálise e nem a estrutura tridimensional de seus componentes. / Intestinal trehalase was purified from Tenebrio molitor larvae after three chromatographic steps (hidrophobic, interaction, ion exchange chromatography and gel filtration). The pure enzyme has an specific activity of 16.5 U/mg, molecular mass of 58 kDa, optimum pH of 5.3 and Km of 0.43 ± 0.03 mM. Amygdalin (Ki = 0.22 mM), prunasin (Ki = 0.43 mM), phlorizin (Ki = 0.50 mM), phloretin (Ki = 0.008 mM), methyl-α-mannoside (Ki = 43 mM), salicin (Ki = 186 mM), and glucone-δ-lactone (Ki = 1.4 mM) are competitive inhibitors of the enzyme. Mandelonitrile (the aglycon of the glucosides amygdalin and prunasin) is a non-competitive mixed-type inhibitor (Ki = 3.8 mM and α = 1.5). Gentiobiose, methyl-α-glucoside, 1,10 phenanthroline and Tris in concentrations of 10 mM, 200 mM, 4 mM, and 264 mM, respectively, were unable to inhibit the enzyme. We designed a model for trehalase active site, taking into account inhibition and multiple inhibition experiments plus protection afforded by competitive inhibitors against the chemical modification of amino acid residues. The site has two assimetric subsites for glucose binding. Phloretin binds to subsite II and methyl-α-mannoside and glucone-δ-lactone bind to subsite I. In this subsite, one His residue modulates the p(Ka of the carboxylate group that acts as a nucleophile in catalysis. The carboxylate and one Arg residue, that acts as a proton donor, are placed in the region between the two subsites. Using RT-PCR techniques, the cDNA coding for T. molitor intestinal trehalase was cloned. From the sequence, we can suppose that the enzyme is soluble and calculate that the molecular mass of the protein would be 61 kDa. T. molitor trehalase can be classified as a member of family 37 of glycoside hydrolases. No member of this family has their catalytical groups nor its 3D structure known.
6

Digestão ácida em diptera superiores / Acid digestion in higher Diptera

Érika Hotz Almeida 10 March 2003 (has links)
Insetos abrangem o maior número de espécies descritas, estando distribuídos por praticamente todos os nichos ecológicos. O tubo digestivo destes animais consiste na principal interface entre estes e o meio externo. Assim, o estudo das enzimas digestivas, ou proteínas relacionadas ao processo digestivo em insetos, faz-se fundamental para a tentativa de desenvolver novos métodos de controle que ajam via canal alimentar, como o uso de plantas transgênicas para controlar insetos fitófagos (Felton & Gatehouse, 1996). Diptera superiores são os únicos animais, além dos vertebrados, que apresentam uma região ácida em seu intestino médio (Vonk & Western, 1984). Assim, o estudo da digestão ácida nestes organismos permite-nos examinar em detalhe este interessante paralelismo evolutivo (muito revelador se incluir também aspectos moleculares). Para realização deste estudo foram escolhidas duas enzimas relacionadas com a digestão ácida em Diptera: uma aspártico-proteinase de Musca domestica, semelhante à catepsina D, e uma lisozima digestiva de Drosophila melanogaster. Para purificar a aspártico-proteinase intestinal de M. domestica, ventrículos anterior e médio de larvas deste inseto foram homegeneizados e centrifugados, sendo o sobrenadante resultante utilizado como fonte de enzima. A combinação de uma cromatografia em coluna de troca iônica seguida de uma filtração em gel mostrou-se como a melhor para a obtenção da aspártico-proteinase intestinal de larvas de M. domestica totalmente purificada. Clones de lisozima de D. melanogaster (LysD) e de A. darlingi (Lysdar) foram utilizados na construção de vetores de expressão a seguir usados na transformação de E. coli linhagem OrigamiTMB (DE3) e P. Pastoris GS115 (his4). As bactérias transformadas com vetor pT7-dar (que continha o gene Lysdar), quando induzidas por IPTG, foram capazes de expressar uma proteína, cujo peso molecular em gel de SDS-PAGE é de cerca de 14 kDa, como o esperado. A lisozima hipotética foi encontrada em corpos de inclusão, que solubilizados por SDS 3% resultaram em proteína inativa. Colônias de P. pastoris transformadas com o vetor pPIC-9-D (contendo o gene LysD) foram submetidas a reação em cadeia com DNA polimerase. Aquelas que geraram produtos de PCR de tamanho coerente com o de uma lisozima foram cultivadas e posteriormente, induzidas por metanol. P. pastoris é capaz de secretar a lisozima induzida. Assim, alíquotas do meio de indução foram utilizadas em ensaios enzimáticos para a detecção da atividade da lisozima intestinal de D. melanogaster. A lisozima é expressa em P. pastoris em grande quantidade (12 mg/L) e com atividade preservada. Foi verificado que há uma intima relação entre a força iônica do meio e o pH ótimo da lisozima intestinal recombinante de D. melanogaster. O pH ótimo é deslocado para valores mais ácidos quando em forças iônicas maiores. Em contrapartida, os valores de atividade obtidos para a lisozima D recombinante de D. melanogaster decrescem com o aumento da força iônica do meio. / Insects are the most numerous of living beings and are found in almost all habitats. The midgut of these animals is the main interface between them and their enviroment. Thus, the study of digestive enzymes or of other proteins relateded to the insect digestive process is putatively useful for the development of new insect control strategies. Houseflies (higher Diptera) are the only animals, besides vertebrates, that present an acidic region in the midgut (Vonk & Western, 1984). Due do that, a detailed analysis of the acidic digestion in these insects may disclose molecular evolutionary paralellisms between those animals. Two enzymes were chosen along the aims discussed: a Musca domestica aspartic-proteinase, similar to cathepsin D and a digestive lysozyme from Drosophila melanogaster. To purify the cathepsin D-like proteinase from M. domestica larvae, larval foreguts and midguts were homogeneized, centrifuged, and the resulting supernatant was used as an enzyme source. Ion-exchange chromatography followed by a gel filtration of enzyme extract resulted in a homogeneous preparation of the enzyme. Clones of lysozyme from D. melanogaster (LysD) and A. darling (Lysdar) were used in the construction of expression vectors, which were used to transform E. coli cells (OrigamiTM B(DE3)) and P. pastoris GS115 (his4). Bacteria transformed with pT7-dar (the expression vector which contained the gene Lysdar), when induced by IPTG, expressed a protein with a molecular weight of 14 kDa, as expected for lysozyme. This protein was found in inclusion bodies that were solubilized in 3% SDS resulting in a protein with no activity. After choosing at random P. pastoris colonies transformed with the expression vector pPIC9-D (containing the gene LysD), they were submited to a PCR. The colonies with 366pb products were grown and induced by methanol. P. pastoris was engineered to excrete the expressed proteins. In accordance to that, about 12 mg of lysozyme were recovered from each litter of culture medium. Recombinant D. melanogaster lysozyme D was more active at acid pH values, when present in media with physiological ionic strengths, and its Km value increased with the ionic strength of media. This is agreement with data obtained with lysozyme D isolated from D. melanogaster midgut. The results support the assertion that this enzyme may be used in crystalographic and site mutagenesis studies to reveal the molecular basis of its catalytic properties.

Page generated in 0.0338 seconds