• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 76
  • 18
  • 15
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 406
  • 110
  • 88
  • 59
  • 58
  • 42
  • 41
  • 36
  • 36
  • 31
  • 28
  • 25
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Instability of an alternating-current positive column in a magnetic field

Rugge, Henry F. January 1963 (has links)
Thesis--University of California, Berkeley, 1963. / "UC-20 Controlled Thermonuclear Processes" -t.p. "TID-4500 (19th Ed.)" -t.p. Includes bibliographical references (p. 117-119).
52

Plasma confinement characteristics and runaway instability in the Proto-Cleo torsatron

Talmadge, Joseph Nathan. January 1982 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1982. / Typescript. Vita. Description based on print version record. Includes bibliographical references (leaves 235-242).
53

Feedback stabilization of electrostatic reactive instabilities

Richards, Roger Keith, January 1976 (has links)
Thesis--University of Wisconsin-Madison. / Includes bibliographical references.
54

Remote sensing of localized ion acoustic waves with multistatic passive radar /

Meyer, Melissa G. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 212-223).
55

Linear and nonlinear fluid instabilities in tokamaks

Amrolia, Zarathustra J. January 1988 (has links)
No description available.
56

Imaging and analysis of wave type interfacial instability in the coextrusion of low-density polyethylene melts

Martyn, Michael T., Spares, Robert, Coates, Philip D., Zatloukal, M. January 2009 (has links)
No / This report covers experimental studies and numerical modelling of interfacial instability in the bi-layer coextrusion flow of two low-density polyethylene melts. Melt streams are converged at an angle of 30° to a common die land. Melt stream confluence was observed in two coextrusion die arrangements. In one die design, which we term ‘bifurcated’ the melt stream is split by a divider plate in the die after being delivered from a single extruder. In the other design melt streams are delivered to a die from two separate extruders. In each die design melt flow in the confluent region and die land to the die exit was observed through side windows of a visualization cell. Velocity ratios of the two melt streams were varied and layer thickness ratios producing wave type interfacial instability determined for each melt for a variety of flow conditions. Stress and velocity fields in the coextrusion arrangements were quantified using stress birefringence and particle image velocimetry techniques. Wave type interfacial instability occurred in the processing of the low-density polyethylene melts at specific, repeatable, stream layer ratios. The birefringent pattern in the confluence region and the beginning of the die land appeared stable even when the extrudate exhibited instability. However, disturbances were observed in the flow field near the exit of the die land. The study demonstrates conclusively it is possible for interfacial instability to occur in the coextrusion of the same melt. The study also shows that wave type interfacial instability in the coextrusion process is not caused by process perturbations of extruder screw rotation. Increased melt elasticity appears to promote this type of instability. A modified Leonov model and Flow 2000™ software was used to simulate the LDPE melt flows through these geometries. There was reasonable agreement between modelled at experimentally determined stress fields. Modelling however provided far more detailed stress gradient information than could be resolved from the optical techniques. A total normal stress difference (TNSD) sign criterion was used to predict the critical layer ratio for the onset of the interfacial instability in one die arrangement and good agreement between theory and experiment has been obtained.
57

Thinnest uniform liquid films formed at the highest speeds with reverse roll coating

Benkreira, Hadj, Shibata, Yusuke, Ito, K. 11 March 2013 (has links)
No / Reverse roll coating is probably the most widely used coating operation, much less investigated than its counterpart and inherently unstable forward roll coating. A new data to complement earlier work which was limited to large gaps and thus “thick” films is presented. The intention is to assess the feasibility of reverse roll coating to yield very thin films (<10 μm) at high speeds (>1 m/s) for application in the newer technologies, such as the production of solar cells and plastic electronics. The data obtained demonstrate this is possible but at the lowest permissible gap (25–50 μm) with low-viscosity fluids (∼7 mPa s). The study also developed a new understanding of how instabilities are controlled. It was seen that the size of the inertia forces generated by the applicator roller in relation to surface tension, as expressed by the Weber number and not the applicator Capillary number (viscous forces/surface tension) which is the critical parameter.
58

Wrinkling, Folding, and Snapping Instabilities in Polymer Films

Holmes, Douglas Peter 01 September 2009 (has links)
This work focuses on understanding deformation mechanisms and responsiveness associated with the wrinkling, folding, and snapping of thin polymer films. We demonstrated the use of elastic instabilities in confined regimes, such as the crumpling and snapping of surface attached sheets. We gained fundamental insight into a thin film's ability to localize strain. By taking advantage of geometric strain localization we were able to develop new strategies for responsive surfaces that will have a broad impact on adhesive, optical, and patterning applications. Using the rapid closure of the Venus flytrap's leafets as dictated by the onset of a snap instability as motivation, we created surfaces with patterned structures to transition through a snap instability at a prescribed stress state. This mechanism causes surface topography to change over large lateral length scales and very short timescales. Changes in the stress state can be related to triggers such as chemical swelling, light-induced architecture transitions, mechanical pressure, or voltage. The primary advantages of the snap transition are that the magnitude of change, the rate of change, and the sensitivity to change can be dictated by a balance of materials properties and geometry. The patterned structures that exhibit these dynamics are elastomeric shells that geometrically localize strain and can snap between concave and convex curvatures. We have demonstrated the control of the microlens shell geometry and that the transition time follows scaling relationships presented for the Venus flytrap. Furthermore, the microlens arrays have been demonstrated as surfaces that can alter wettability. Using a similar novel processing technique, microarrays of freestanding elastomeric plates were placed in equibiaxial compression to fabricate crumpled morphologies with strain localized regions that are difficult to attain through traditional patterning techniques. The microstructures that form can be initially described using classical plate buckling theory for circular plates under an applied compressive strain. Upon the application of increasing compressive strain, axisymmetric microstructures undergo a secondary bifurcation into highly curved, nonaxisymmetric structures. The inherent interplay between geometry and strain in these systems provides a mechanism for generating responsiveness in the structures. By swelling the elastomeric plates with a compatible solvent, we demonstrated the microstructures ability to reversibly switch between axisymmetric and nonaxisymmetric geometries. To further explore the localization of strain in materials, we have fabricated sharply folded films of glassy, homogenous polymers directly on rigid substrates. The films were uniaxially compressed and buckle after delaminating from the substrate. As the applied strain is increased, we observed strain localization at the center of the delaminated features. We found that normally brittle, polystyrene films can accommodate excessive compressive strains without fracture by undergoing these strain localizing fold events. This technique provided a unique way to examine the curvature and stability of folded features, but was not adequate for understanding the onset of folding. By taking thin films, either glassy or elastomeric, and simply lifting them from the surface of water, we observed and quantified the wrinkle-to-fold transition in an axisymmetric geometry. The films initially wrinkle as they are lifted with a wavelength that is determined by the film thickness and material properties. The wrinkle-to-fold transition is analogous to the transition observed in uniaxially compressed films, but the axisymmetric geometry caused the fold to act as a disclination that increased the radial stress in the film, thereby decreasing the wavelength of the remaining wrinkles. Further straining the films caused the remaining wrinkles to collapse into a discrete number of folds that is independent of film thickness and material properties.
59

Numerical Simulations of Planetesimal Formation

Rucska, Josef James January 2022 (has links)
A long-standing question in planet formation is the origin of planetesimals, the kilometre-sized precursors to protoplanets. Asteroids and distant Kuiper Belt objects are believed to be remnant planetesimals from the beginnings of our Solar system. A leading mechanism for explaining the formation of these bodies directly from centimetre-sized dust pebbles is the streaming instability (SI). Using high resolution numerical simulations of protoplanetary discs, we probe the behavior of the non-linear SI and planetesimal formation in previously unexplored configurations. Small variations in initial state of the disc can lead to different macroscopic outcomes such as the total mass converted to planetesimals, or the distribution of planetesimal masses. These properties can vary considerably within large simulations, or across smaller simulations re-run with different initial perturbations. However, there is a similar spread in outcomes between multiple smaller simulations and between smaller sub-regions in larger simulations. In small simulations, filaments preferentially form rings while in larger simulations they are truncated. Larger domains permit dynamics on length scales inaccessible to the smaller domains. However, the overall mass concentrated in filaments across various length scales is consistent in all simulations. Small simulations in our suite struggle to resolve dynamics at the natural filament separation length scale, which restricts the possible filament configurations in these simulations. We also model discs with multiple grain species, sampling a size distribution predicted from theories of grain coagulation and fragmentation. The smallest grains do not participate in the formation of planetesimals or filaments, even while they co-exist with dust that readily forms such dense features. For both single-grain and multiple-grain models, we show that the clumping of dust into dense features results in saturated thermal emission, requiring an observational mass correction factor that can be as large as 20-80\%. Finally, we present preliminary work showing that the critical dust-to-gas mass ratio required to trigger the SI can vary between 3D and 2D simulations. / Thesis / Doctor of Philosophy (PhD)
60

Magnetohydrodynamic analysis of the stability of the plasmapause

Figueroa Viñas, Adolfo January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science. / Bibliography: leaves 171-173. / by Adolfo Figueroa Vinãs. / Ph.D.

Page generated in 0.1277 seconds