• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 993
  • 547
  • 221
  • 212
  • 136
  • 100
  • 77
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 15
  • 12
  • Tagged with
  • 2754
  • 458
  • 278
  • 237
  • 230
  • 192
  • 169
  • 164
  • 160
  • 145
  • 145
  • 128
  • 127
  • 119
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
781

The role of design in home-based health-care equipment

Lee, Sang-Young January 2000 (has links)
No description available.
782

Charged particle identification system.

Cominos, Theodore. January 1969 (has links)
No description available.
783

The Epistemology of Measurement: A Model-based Account

Tal, Eran 07 January 2013 (has links)
Measurement is an indispensable part of physical science as well as of commerce, industry, and daily life. Measuring activities appear unproblematic when performed with familiar instruments such as thermometers and clocks, but a closer examination reveals a host of epistemological questions, including: 1. How is it possible to tell whether an instrument measures the quantity it is intended to? 2. What do claims to measurement accuracy amount to, and how might such claims be justified? 3. When is disagreement among instruments a sign of error, and when does it imply that instruments measure different quantities? Currently, these questions are almost completely ignored by philosophers of science, who view them as methodological concerns to be settled by scientists. This dissertation shows that these questions are not only philosophically worthy, but that their exploration has the potential to challenge fundamental assumptions in philosophy of science, including the distinction between measurement and prediction. The thesis outlines a model-based epistemology of physical measurement and uses it to address the questions above. To measure, I argue, is to estimate the value of a parameter in an idealized model of a physical process. Such estimation involves inference from the final state (‘indication’) of a process to the value range of a parameter (‘outcome’) in light of theoretical and statistical assumptions. Idealizations are necessary preconditions for the possibility of justifying such inferences. Similarly, claims to accuracy, error and quantity individuation can only be adjudicated against the background of an idealized representation of the measurement process. Chapters 1-3 develop this framework and use it to analyze the inferential structure of standardization procedures performed by contemporary standardization bureaus. Standardizing time, for example, is a matter of constructing idealized models of multiple atomic clocks in a way that allows consistent estimates of duration to be inferred from clock indications. Chapter 4 shows that calibration is a special sort of modeling activity, i.e. the activity of constructing and testing models of measurement processes. Contrary to contemporary philosophical views, the accuracy of measurement outcomes is properly evaluated by comparing model predictions to each other, rather than by comparing observations.
784

The Epistemology of Measurement: A Model-based Account

Tal, Eran 07 January 2013 (has links)
Measurement is an indispensable part of physical science as well as of commerce, industry, and daily life. Measuring activities appear unproblematic when performed with familiar instruments such as thermometers and clocks, but a closer examination reveals a host of epistemological questions, including: 1. How is it possible to tell whether an instrument measures the quantity it is intended to? 2. What do claims to measurement accuracy amount to, and how might such claims be justified? 3. When is disagreement among instruments a sign of error, and when does it imply that instruments measure different quantities? Currently, these questions are almost completely ignored by philosophers of science, who view them as methodological concerns to be settled by scientists. This dissertation shows that these questions are not only philosophically worthy, but that their exploration has the potential to challenge fundamental assumptions in philosophy of science, including the distinction between measurement and prediction. The thesis outlines a model-based epistemology of physical measurement and uses it to address the questions above. To measure, I argue, is to estimate the value of a parameter in an idealized model of a physical process. Such estimation involves inference from the final state (‘indication’) of a process to the value range of a parameter (‘outcome’) in light of theoretical and statistical assumptions. Idealizations are necessary preconditions for the possibility of justifying such inferences. Similarly, claims to accuracy, error and quantity individuation can only be adjudicated against the background of an idealized representation of the measurement process. Chapters 1-3 develop this framework and use it to analyze the inferential structure of standardization procedures performed by contemporary standardization bureaus. Standardizing time, for example, is a matter of constructing idealized models of multiple atomic clocks in a way that allows consistent estimates of duration to be inferred from clock indications. Chapter 4 shows that calibration is a special sort of modeling activity, i.e. the activity of constructing and testing models of measurement processes. Contrary to contemporary philosophical views, the accuracy of measurement outcomes is properly evaluated by comparing model predictions to each other, rather than by comparing observations.
785

Instrument för bedömning av smärta inom intensivvård  - en litteraturstudie om två mätinstruments validitet och reliabilitet

Anth, Marie, Sikström, Josefin January 2012 (has links)
<p>Uppsatsen godkänd i Februari i år (2012). Glömt reg. i DIVA...</p>
786

Operative temperature measurement and control /

Halawa, Edward E. H. Unknown Date (has links)
Thesis (MEng) -- University of South Australia, 1994
787

Knowledge-based software tools to support the measurement system designer /

Harris, David Deronda. Unknown Date (has links)
Thesis (MEng (Electronic Eng))--University of South Australia, 1994
788

Flute acoustics: measurement, modelling and design

Dickens, Paul, Physics, Faculty of Science, UNSW January 2007 (has links)
A well-made flute is always a compromise and the job of flute makers is to achieve a musically and aesthetically satisfying compromise; a task that involves much trial and-error. The practical aim of this thesis is to develop a mathematical model of the flute and a computer program that assists in the flute design process. Many musical qualities of a woodwind instrument may be calculated from the acoustic impedance spectrum of the instrument. A technique for fast and accurate measurement of this quantity is developed. The technique is based on the multiple-microphone technique, and uses resonance-free impedance loads to calibrate the system and spectral shaping to improve the precision at impedance extrema. The impedance spectra of the flute and clarinet are measured over a wide range of fingerings, yielding a comprehensive and accurate database. The impedance properties of single finger holes are measured using a related technique, and fitformulae are derived for the length corrections of closed finger holes for a typical range of hole sizes and lengths. The bore surface of wooden instruments can change over time with playing and this can affect the acoustic impedance, and therefore the playing quality. Such changes in acoustic impedance are explored using wooden test pipes. To account for the effect of a typical player on flute tuning, an empirical correction is determined from the measured tuning of both modern and classical flutes as played by several professional and semi-professional players. By combining the measured impedance database with the player effects and various results in the literature a mathematical model of the input impedance of flutes is developed and implemented in command-line programs written in the software language C. A user-friendly graphical interface is created using the flute impedance model for the purposes of flute acoustical design and analysis. The program calculates the tuning and other acoustical properties for any given geometry. The program is applied to a modern flute and a classical flute. The capabilities and limitations of the software are thereby illustrated and possible contributions of the program to contemporary flute design are explored.
789

A universe of sky and snow: site-testing for optical astronomy at Dome C, Antarctica

Kenyon, Suzanne Laura, Physics, Faculty of Science, UNSW January 2007 (has links)
The unique advantages for astronomy on the Antarctic plateau are now well established. In particular, Dome C, Antarctica is potentially one of the best new sites for optical, infrared and sub-millimeter astronomy, presenting the opportunity to build unique astronomical instruments. Located high on the Antarctic plateau, Dome C offers low wind, clear skies, and negligible precipitation. This thesis addresses three additional properties of the site relevant to optical astronomy-sky brightness, atmospheric extinction and optical turbulence. The sky at an optical astronomy site must be dark, and the atmosphere very clean with minimal light extinction. At present little is known from an astronomer's perspective about the optical sky brightness and atmospheric extinction at most Antarctic sites. The high latitude of Dome C means that the Sun spends a relatively small amount of time far below the horizon, implying longer periods of astronomical twilight and less optical dark time than other sites, especially those close to the equator. We review the contributions to sky brightness at high-latitude sites, and calculate the amount of usable dark time at Dome C. We also explore the implications of the limited sky coverage of high-latitude sites, and review optical extinction data from the South Pole. A proposal to extend the amount of usable dark time through the use of polarising filters is examined, and we present the design and calibration of an instrument (called Nigel) to measure the brightness, spectrum and temporal characteristics of the twilight and night sky. The atmospheric turbulence profile above an astronomical site limits the achievable resolution and sensitivity of a telescope. The atmospheric conditions above high plateau Antarctic sites are different to temperate sites; the boundary layer of turbulence is confined very close to the surface, and the upper atmosphere turbulence very weak. We present the first winter-time turbulence profiles of the atmosphere above Dome C, and characterise the site in terms of the achievable precision for photometry and astrometry, and the isoplanatic angle and coherence time for the adaptive optics.
790

Proximal gastric motor and sensory function in health and disease / by Geoffrey Stuart Hebbard.

Hebbard, Geoffrey Stuart January 1997 (has links)
Bibliography: leaves 205-258. / vii, 258 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The studies described in this thesis examine the mechanical function of the barostat. The barostat is then used to assess proximal gastric function in patients with gastro-oesophageal reflux disease, and the effects of hyperglycaemia on proximal gastric sensory and motor function in normal individuals. To detect the low pressures that may be important in determining gastric outflow, a high accuracy manometric recording system is developed ; patterns of intragastric pressure are then examined during gastric emptying of saline. Finally, a new barostat is designed and tested. / Thesis (Ph.D.)--University of Adelaide, Dept. of Medicine, 1997

Page generated in 0.0475 seconds