• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des propriétés thermiques et mécaniques des bétons isolants structurels incorporant des cénosphères / Characterization of thermal and mechanical properties of insulating structural concrete incorporating cenospheres

Mohaine, Siyimane 19 October 2018 (has links)
Dans le domaine de l’isolation thermique du bâtiment, les évolutions réglementaires (RT2012)et normatives (NF BPE : Béton à Propriétés Thermiques, septembre 2016) incitent à évoluer vers des bétons isolants et structurels (BIS). La maîtrise de leur conductivité thermique est primordiale. Il est possible, en plus de faire appel à un squelette granulaire léger, de jouer sur la nature de la pâte en utilisant des inclusions qui apporteraient un pouvoir isolant supplémentaire : les cénosphères. Dans un contexte de facilité de mise en oeuvre, à ces propriétés est rajouté le critère auto plaçant des bétons. On parle alors de Bétons Isolants Structurels Autoplaçants (BISAP). La maitrise et la validation de ces nouvelles formules dans le respect d’une approche prescriptive a nécessité la caractérisation des matériaux à différentes échelles (de l’inclusion à l’échelle de l’ouvrage) en développant des approches expérimentales et numériques. Leur comportement à l’état frais et à l’état durci a été analysé. Les conductivités thermiques mesurées placent ces nouveaux bétons dans la catégorie Bétons Isolants Structurels au sens du nouveau référentiel. Le modèle numérique développé permet d’approcher correctement les valeurs expérimentales. D’autre part, la sensibilité des BISAP incorporant des cénosphères à plusieurs indicateurs de durabilité (porosité accessible à l’eau, perméabilité,carbonatation et retrait) a également été étudiée. L’influence des microsphères est plus ou moins notable en fonction du mécanisme abordé. / In the field of building thermal insulation, regulatory (RT2012) and standards (NF BPE: Béton à Propriétés Thermiques, September 2016) evolutions are encouraging the use of insulating structural concrete (BIS). The control of their thermal conductivity is essential. It is possible, in addition to using lightweight aggregates, to modify the composition of the cement paste by using hollow inclusions (fly ash cenospheres) to bring an additional thermal insulating potential. In a context of improved workability, to these properties is added the criterion of self-compacting concrete. The validation of these new formulas required the characterization of materials at different scales (from inclusion scale to building scale) by implementing experimental and numerical approaches. Their properties at fresh and hardened state were analyzed. The measured thermal conductivities place these new concretes in the Category of Structural Insulating Concrete in the sense of the new standard. The developed numerical model allowed approaching the experimental measurements correctly. The effect of cenospheres’ incorporation into cement paste on several durability indicators was also characterized.
2

Cyclic Behavior of Screen Grid Insulated Concrete Form Components

Werner, Carl Scott 01 January 2010 (has links)
The principle of sustainability in the built environment has become much more significant in the past decade, resulting in a push to develop building systems that are more energy efficient, durable, and use fewer natural resources. For residential and light commercial buildings, insulated concrete forms (ICF) have enjoyed increasing popularity for their ability to meet these new demands. ICFs are a stay-in-place concrete formwork system for building structural walls that are also highly insulated, among other benefits. Screen-grid ICFs (SGICF) are a small subset of ICFs that tend to use less concrete than standard ICFs and are sometimes made of recycled materials. These traits make SGICFs attractive, but there is a lack of understanding of their structural characteristics due to their irregular internal concrete structure. Because of this, structures using SGICFs are limited to heights no higher than two stories. Further study should show whether SGICFs structures can safely built to greater heights. This investigation studied two types of SGICFs at a component level in order to gain understanding of their lateral force and drift ratio capacities under cyclic loading. Several variables, including steel reinforcement details, the type of concrete, and the presence of the forms, were altered to measure their impact on the performance of the systems. Test results suggested that the ICF formwork increased lateral strength by up to 100% and lateral deformation capacity by up 60% when compared to identical specimens tested with the formwork removed. Results also showed that confinement of the cement, either by mesh hoops, spiral wire, or fiber-reinforced concrete improved the drift ratio at failure up to 500% when compared to specimens with no confinement material. Computer models were created to gauge their ability to replicate the behavior of the experimental test results. The models typically overestimated the lateral load resistance of the samples by 50-100%, and even more in some cases, depending on the reinforcement. The models were not reliable in determining the drift ratio at which the sample was considered to have failed. In some cases the model failed at 50% lower lateral deformations than the test specimen, while in others the model did not fail at all. Future studies should explore refinements of the models to increase their accuracy and usefulness, as well as accounting for the contributions do to the form material. Future studies should also include using spiral wires, mesh hoops, or fiber reinforced concrete in full-scale walls to verify their efficacy in improving overall wall performance.
3

Four Family Houses in a College Town

Steed, Travis Gibson 09 January 2007 (has links)
This thesis began as a study in creating good family houses in a town built for students. It evolved into a study of the form of the houses themselves. The nature and qualities of the site generated the form the buildings ultimately would take. The site is a south facing slope with distant mountain views that improve as the viewer ascends. The orientation allows for a line of buildings along the east-west axis where each can enjoy the benefits of unobstructed southern glazing. The slope offers the opportunity to create a proper base upon which to place the houses. This base provides a level, more usable site and creates a new horizon which edits the view below. The houses are four subdivided cubes elevated above the shared semicircular base. One half of each cube is divided into three floors, the other half is open from floor to roof and contains the large open staircase winding up to the upper floors. One has an opportunity to experience the full scale of the cube, both from the bottom looking up and as one ascends through it. The southern glass wall allows for passive solar heating in the winter and takes maximum advantage of the mountain views. The remaining three walls are punctured only where necessary to bring light to the more private rooms. This focuses attention to the southern view and lessens the awareness of the houses on either side. The result is efficient use of the land with perceived seclusion. / Master of Architecture
4

Experimental Investigation of Lateral Cyclic Behavior of Wood-Based Screen-Grid Insulated Concrete Form Walls

Garth, John Stuart 13 June 2014 (has links)
Insulated concrete forms (ICFs) are green building components that are primarily used for residential wall construction. Unlike most polystyrene based ICF variants, the Faswall ICFs used in these experiments were significantly denser because they were made from recycled wood particles and cement. The current design approach for structures constructed with this type of wall form only allows the designer to consider the contribution of the reinforced concrete cores. Previous research has shown that this approach may be conservative. This project experimentally evaluated the lateral structural response of these types of grid ICF walls under increasing amplitude of in-plane cyclic loading. Two different height-to-length (aspect) ratios (approximately 2:1 and 1:1) were investigated, as was the effect of simultaneous gravity load. Furthermore, the reinforced concrete grid was exposed for each aspect ratio in order to examine the contribution of the ICF blocks to the lateral response. Analyses of hysteretic behaviors and failure modes indicated conservatism in the current design approach for estimating lateral strength and ignoring the beneficial contribution of the ICF blocks to overall performance. The presence of the wall forms increased the lateral shear capacity of the walls by an average of 42% (compared to the walls with forms removed), while also increasing the deformation capacity by an average of 102%. Furthermore, by considering an additional gravity load of 10 kips-per-lineal-foot (klf), the shear resistance of the walls increased by 32% (versus walls only subjected to self-weight), on average, and the deformation capacity of the walls increased by an average of 19%. Comparisons of the experimental results to several design equations led to the recommendation of a design equation that was previously accepted for another type of ICF system.

Page generated in 0.0803 seconds