Spelling suggestions: "subject:"insulin -- atherapeutic used."" "subject:"insulin -- btherapeutic used.""
11 |
Signalling pathways involved in insulin cardioprotection : are they comparable in normoxic perfused isolated rat heart vs. ischaemia/reperfusion model?Manga-Manguiya, Edith Sylvie 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2006. / ENGLISH ABSTRACT: Introduction: It is well documented that insulin offers cardioprotection
against the consequences of ischaemia/reperfusion injury. Insulin-induced
improvements in cardiac functions are widely investigated in models of
ischaemia and reperfusion. It has been shown that many signalling pathways
may be involved in the cardioprotection properties of insulin under those
conditions. These pathways include PI3-K, PKB/Akt, p70S6k, ERK and many
others. However, little data exists on the effects of insulin on the heart under
normoxic condition. Some evidence has been presented that insulin has a
positive inotropic effect on the normoxic perfused rat heart, but no precise
cellular mechanism has been investigated or described in this regard. We
believe that an investigation into the effects of insulin on cardiac function and
pathways involved under normoxic conditions may help us to better
understand the mechanisms of insulin-induced cardioprotection. Aims: To
determine a suitable dose of insulin at which a positive inotropic response
could be detectable under normoxic conditions, to investigate the possible
mechanisms involved in insulin-induced increases in contractility with specific
reference to the vasculature and the coronary flow and to investigate a
possible involvement of PI3-K and its downstream effectors on the insulin
effects on cardiac functions under normoxic conditions. Materials and
methods: Isolated rat hearts were perfused retrogradely using the
Langendorff technique. After 10 minutes of stabilization hearts were perfused
for 30 minutes either with standard perfusion solution i.e. Krebs-Henseleit
buffer + glucose gassed with 95%O2, 5%CO2 (control hearts), or with
standard perfusion solution plus insulin alone or insulin together with the nitric oxide synthase inhibitor L-NAME or the PI3-K inhibitor wortmannin. Left
ventricular developed pressure (LVDevP), heart rate (HR) and coronary flow
(CF) as well as phosphorylated PI3-K and PKB/Akt in heart were measured.
Results: Administration of insulin alone at physiological concentrations
showed improved cardiac function compared to hearts in the control group.
Hearts that received insulin+L-NAME showed a significant decrease in
function compared to the control hearts and the hearts that received insulin
alone (p<0.05). Phosphorylated PKB/Akt (Thr308) was increased in hearts
that received insulin alone and insulin+L-NAME compared to the control
hearts. Phosphorylated PI3-K tended to be higher in hearts where insulin was
administered alone compared to the hearts that received insulin+L-NAME or
insulin+wortmannin. Conclusion: This study confirmed that physiological
concentrations of insulin exert positive inotropic effects on cardiac function in
normoxic perfused rat hearts as seen with the improved LVDevP. Inhibition of
PI3-K by wortmannin induced a decrease in phosphorylated PKB/Akt in
hearts that received insulin+wortmannin and administration of L-NAME
impaired the beneficial effects of insulin on cardiac functions. Therefore these
results may indicate that nitric oxide may have a role in the positive effect of
insulin on cardiac function in the healthy heart perfused under normoxic
conditions. L-NAME as well as wortmannin reversed the positive inotropic
effects of insulin. Both inhibitors also unmasked effects of insulin via nitric
oxide and PI3-K on heart rate and coronary flow. / AFRIKAANSE OPSOMMING: Inleiding: Dit is welbekend dat toediening van insulien die hart beskerm
teen ischemie/reperfusie-beserings, wat lei tot verbeterde hartfunksie.
Hierdie effek word wyd ondersoek in modelle van ischemie en reperfusie. Dit
is bewys dat ‘n verskeidenheid seintransduksie paaie, insluitend PI3-K,
PKB/Akt, p70S6k en ERK, betrokke is by hierdie beskermende effek van
insulien op die hart. Baie min data is egter beskikbaar rakende die effek van
insulien tydens normoksiese toestande. Alhoewel dit bekend is dat insulien ’n
inotropiese effek op die normale geperfuseerde hart het, is die presiese
sellulêre meganismes wat dit bewerkstellig nog nie nagevors nie. Om dus ‘n
beter begrip van hierdie meganismes te verkry is dit dus noodsaaklik om die
effekte van insulien onder normoksiese perfusie toestande na te vors.
Doelstellings: Om ‘n geskikte dosis, waarby insulien sy positiewe
inotropiese effek onder normale toestande het, vas te stel, om die moontlike
meganismes betrokke by insulien-geïnduseerde verbetering in
hartsametrekbaarheid te bestudeer, met spesifieke verwysing na die
bloedvoorsiening en koronêre vloei, en om die moontlike betrokkenheid van
die PI3-K pad en sy teiken effektore onder normale suurstof-toestande te
ondersoek. Materiaal en metodes: Geïsoleerde rotharte is geperfuseer
deur gebruik te maak van die Langendorff tegniek. Na ‘n stabilisasie periode
van 10 minute is rotharte blootgestel aan 30 minute perfusie met een van vier
oplossings: ‘n standaard perfusie oplossing (Krebs-Henseleit buffer met
glukose onder spesifieke gaskondisies van 95% O2, 5% CO2 – kontrole
harte); standaard perfusie oplossing en insulien; standaard perfusie oplossing met insulien en die stikstofoksied sintase inhibitor L-NAME, of
standaard perfusie oplossing, met insulien en die PI3-K inhibitor wortmannin.
Met verloop van die perfusie protokol, is ontwikkelde linker ventrikulêre druk
(LVDevP), harttempo (HR) en koronêre vloei (CF), sowel as PI3-K en
PKB/Akt fosforilasie, gemeet. Resultate: Toediening van insulien teen
fisiologiese konsentrasies het ‘n verbeterde hartfunksie tot gevolg, in
vergelyking met harte in die kontrole groep. In teenstelling hiermee het harte
wat insulien+L-NAME ontvang het ‘n betekenisvolle verlaagde funksie getoon
in vergelyking met die kontrole harte en harte wat slegs insulien ontvang het
(p<0.05). Harte wat slegs insulien, of insulien+L-NAME ontvang het, het ‘n
verhoging in gefosforileerde PKB/Akt (Thr308) getoon in vergelyking met
kontrole harte. Gefosforileerde PI3-K het ook geneig om hoër te wees in
harte wat insulien+L-NAME of insulien+wortmannin ontvang het, as in harte
wat slegs insulien ontvang het. Gevolgtrekking: Hierdie studie bewys dat
fisiologiese konsentrasies van insulien, onder normale suurstof-toestande, ‘n
positiewe inotropiese effek op hartfunksie uitoefen, soos gesien in die
verbeterde LVDevP. Wortmannin-geïnduseerde inhibering van die PI3-K pad
het ‘n verlaagde PKB/Akt fosforilasie tot gevolg gehad in harte wat
insulien+wortmannin ontvang het, terwyl die toediening van L-NAME die
voordelige effekte van insulien op hartfunksie onderdruk het. Hierdie
resultate dui dus aan dat stikstofoksied ‘n rolspeler is in die positiewe
inotropsiese effek van insulien op hartfunksie tydens normoksiese toestande,
aangesien beide inhibitore hierdie effek onderdruk het. Beide inhibitore het
ook die betrokkenheid van stikstofoksied en die PI3-K pad by die effek van
insulien op harttempo en koronêre vloei onthul.
|
12 |
Implementation of novel flow cytometric methods to assess the in vitro antidiabetic mechanism of a Sutherlandia Frutescens extractElliot, Gayle Pamela January 2010 (has links)
The ability of insulin to stimulate glucose uptake into muscle and adipose tissue is central to the maintenance of whole-body glucose homeostasis. Deregulation of insulin action manifests itself as insulin resistance, a key component of type 2 diabetes. Insulin resistance is also observed in HIV patients receiving protease inhibitors. An agent that can reversibly induce an insulin-resistant state would be a very useful tool in developing model systems that mimic the pathogenesis of type 2 diabetes. Insulin resistance can arise from defects in insulin signal transduction, changes in the expression of proteins or genes that are targets of insulin action, cross talk from other hormonal systems or metabolic abnormalities. Deterioration of the insulin-receptor-signalling pathway at different levels leading to decreased levels of signalling pathway intermediates and/or decreased activation through phosphorylation accounts for the evolution from an insulin-resistant state to type 2 diabetes. In addition, defects in GLUT4 glucose transporter translocation are observed, further fuelling impairments in skeletal muscle glucose uptake. Levels of insulin-induced GLUT4 translocation in the skeletal muscle of type 2 diabetic patients are typically reduced by 90%. Many cellular pathways & their intermediates are in some way or another linked to insulin signalling. This study focused on three of these namely the PI3-kinase/Akt pathway, the Mitogen Activated Protein Kinase (MAPK) cascade and the AMP Kinase pathway, with successful monitoring of the PI3-K pathway. Investigations involved observing and evaluating the effects of various compounds as well as an indigenous medicinal plant, Sutherlandia frutescens on the activities of key insulin signalling pathway intermediates within the three fore mentioned pathways including Akt, AMPK and MEK1/2 as well as membrane surface GLUT4 levels. Scientific research has in the past leant heavily on Western blotting as the method of choice for gaining vital information relating to signal transduction pathways, however for research into cellular mechanisms the negatives of this method outweigh the positives. The drawbacks include a need for large amount of cells, multiple washing steps which may be disadvantageous to any weak and transient interactions as well as lysing of cells which may interfere with the maintenance of the subcellular localisation of a specific signalling event. Based on these, the need for a better method in terms of speed & reliability to monitor phosphorylation states of signal transduction pathway intermediates & GLUT4 translocation was evident and was one VII of the main aims & successes of this study. The method created used the mouse muscle cell line C2C12 in conjunction with the quick, sensitive method of flow cytometry which allowed us to monitor these processes in these cells through immune-labelling. Adherent cell cultures such as the C2C12 cell line pose the problem of possible damage to plasma membrane receptors (including insulin receptors) during harvesting to obtain a cell suspension for flow cytometry. We however used C2C12 mouse myocytes to optimize a method yielding insulin responsive cells in suspension that were successfully used for flow cytometry after immunelabelling of insulin signalling intermediates. Insulin (0.1μM) significantly raised the levels of both P-Akt and GLUT4 above basal levels. This effect was shown to be dose dependent. At a concentration of 50μg/ml, Sutherlandia frutescens was able to act as an insulin-mimetic in terms of its ability to increase P-Akt levels, GLUT4 translocation and glucose utilisation in an acute manner. These increases could be reduced with the addition of wortmannin, a PI3-K inhibitor. Therefore, these results suggest the mechanism of the plant extract’s insulin-like activity may be in part due to the activation of the insulin signalling pathway leading to GLUT4 translocation, which involves the phosphorylation of insulin receptor- and subsequent PI3-K activity, leading to P-Akt activity. These results provide further evidence of this plant extract’s anti-diabetic potential. The effect of Sutherlandia frutescens on insulin secretion, calcium signalling and proliferation in INS-1 rat pancreatic cells was also investigated and it was found to increase the activities of all of these processes. However no change in the levels of GLUT2 glucose transporter was seen. Ritonavir is prescribed by the South African Department of Health in co-formulation with other protease inhibitors within its second regime in the treatment of HIV and AIDS. Using C2C12 cells, ritonavir decreased glucose uptake acutely and had no effect on GLUT4 translocation however surprisingly increased P-Akt levels. In conclusion, it was found that Sutherlandia frutescens has antidiabetic benefits, diverse in nature depending on tissue type as well as length of time administered. The establishment of novel flow cytometry techniques to assess antidiabetic properties using in vitro cell culture was achieved. These methods will be useful in the future for the assessment of insulin sensitivity and in the identification of novel compounds that stimulate the insulin signalling pathways.
|
13 |
Diabetes and coronary surgery : metabolic and clinical studies on diabetic patients after coronary surgery with special reference to cardiac metabolism and high-dose GIK /Szabó, Zoltán. January 2001 (has links)
Diss. (sammanfattning) Linköping : Univ., 2001. / Härtill 5 uppsatser.
|
Page generated in 0.0943 seconds