• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 63
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 310
  • 310
  • 192
  • 60
  • 51
  • 49
  • 49
  • 43
  • 42
  • 41
  • 40
  • 34
  • 33
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nitric oxide in experimental models of endotoxic shock and glomerulonephritis

Bune, Alison Jane January 1996 (has links)
No description available.
2

Increased hexosamine biosynthesis and protein O-GLCNAC protect isolated rat heart from ischemia/reperfusion injury

Liu, Jia, January 2006 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2006. / Title from first page of PDF file (viewed on Feb. 22, 2007). Includes bibliographical references (p. 124-134).
3

Peroxynitrite/Ho-1 interaction in propofol post-conditioning protection against myocardial ischemia reperfusion injury

Mao, Xiaowen, 毛晓雯 January 2013 (has links)
Coronary artery disease limits myocardial blood flow and results in myocardial infarction. Reperfusion therapies restore coronary flow, but may also cause myocardial ischemia reperfusion injury (MIRI). Multiple critical factors contribute to MIRI and among them, oxidative stress plays an important role. This burst of oxidative stress during reperfusion is caused by a variety of sources which collectively are called reactive oxygen species (ROS). Peroxynitrite is more cytotoxic than other ROSs, which at high concentration serves as a detrimental molecule with a variety of target. Peroxynitrite is largely produced during the early reperfusion due to the dramatically increased concentrations of superoxide (O2●-) and nitric oxide (NO). Current cardioprotective therapies against MIRI include exogenous antioxidant treatment and conditioning treatment that induced endogenous antioxidant signaling which upregulates heme oxygenase1 (HO-1), which confers its antioxidant effect in cells and tissues by degrading the latent oxidant heme and generating downstream antioxidant molecules. More importantly, peroxynitrite is closely related to HO-1 in pathogenesis of MIRI and pharmacological or genetic methods that induce over-expression of HO-1 in turn decrease the peroxynitrite generation. In this thesis we report the results of three studies designed to explore the interaction of peroxynitrite and HO-1 in cardioprotection against MIRI. In the first study we demonstrated that HO-1 plays an essential role in chronic antioxidant treatment against MIRI in 4-week diabetic rats. Chronic antioxidant treatment with two kinds of antioxidants that target different sources of ROSs was administrated in an in vivo study with streptozotocin (STZ)-induced type 1 diabetic rats. Antioxidant treatments synergistically attenuate MIRI and cardiac dysfunction in type 1 diabetic rats by enhancing HO-1 expression, and inhibition of HO-1 expression cancelled antioxidant cardioprotection. This finding was supported by in vitro experiments in a cardiomyocyte hypoxia-reoxygenation model. The second study explored the peroxynitrite/HO-1 interaction in propofol post-conditioning (PPC) in acute MIRI with both ex vivo and in vivo animal models. We showed that PPC conferred similar cardioprotection as an established intervention˗ischemic post-conditioning (I-PostC). PPC cardioprotection was achieved through down-regulating peroxynitrite formation and activation of HO-1 and its related signaling molecules. This finding indicates that anaesthetic post-conditioning treatment (such as PPC) can achieve similar cardioprotection as ischemic post-conditioning and can avoid potential mechanical injury that may be caused by I-PostC. Inhibition of peroxynitrite reduction and subsequent enhanced HO-1 expression may be the fundamental mechanism of PPC cardioprotection. Lastly, we further explored PPC cardioprotection against MIRI in diabetic rats. We found that the diabetic heart lost its sensitivity to PPC and the diminished effect of PPC in inducing HO-1 over-expression may be a key mechanism. Exogenous supplementation of adiponectin, an adipocyte-derived plasma protein with anti-diabetic and anti-inflammatory properties, restored diabetic heart sensitivity to PPC that is associated with restoration of HO-1 expression. This finding may provide a potential therapy rescuing diabetic patient challenged by myocardial infarction. The studies described in this thesis have enhanced our knowledge concerning the role of peroxynitrite in the pathogenesis of MIRI and the critical role of HO-1 in different cardioprotective therapies, in particular anaesthetic postconditioning cardioprotection. / published_or_final_version / Anaesthesiology / Doctoral / Doctor of Philosophy
4

Effect of streptozotocin induced diabetes on the susceptibility of ex vivo rat heart ..

Zhang, Liqun January 2000 (has links)
No description available.
5

The effects of ischemia-reperfusion injury on cytosolic and mitochondrial levels of glutathione in the rat kidney

Becker, Bryan A. January 2001 (has links)
This study was done to investigate the effect of ischemia-reperfusion injury on cytosolic and mitochondrial glutathione levels in the rat kidney. Glutathione is the main cellular defense against free radicals that are thought to cause ischemia-reperfusion injury. Right kidneys from anesthetized female Lewis rats (9-12 months old) were exposed to 60 minutes of ischemia followed by 0, 30, or 120 minutes of reperfusion. The kidneys were perfused with isotonic saline, harvested, homogenized, and separated into cytosolic and mitochondrial fractions by differential centrifugation. Reduced (GSH) and oxidized (GSSG) glutathione levels were measured spectrophotometrically. There were significant decreases in both the GSH levels and the % GSH/Total Glutathione in the cytosol and mitochondria of kidneys exposed to ischemia-reperfusion injury when compared to control kidneys. The glutathione levels in either the cytosol or mitochondria did not recover even after 120 minutes of reperfusion. This study demonstrates that 60 minutes of ischemia followed by 0, 30, or 120 minutes of reperfusion decreases both cytosolic and mitochondrial levels of glutathione in the rat kidney. / Department of Physiology and Health Science
6

Regulation of chemokine expression during renal ischemia/reperfusion injury

宋蘭, Sung, Lan, Fion. January 2002 (has links)
published_or_final_version / Pharmacology / Doctoral / Doctor of Philosophy
7

Investigations into the role of endothelial endothelin-1 on transient focal cerebral ischemia

Leung, Wai-chung, 梁偉聰 January 2007 (has links)
published_or_final_version / abstract / Anatomy / Doctoral / Doctor of Philosophy
8

The role of protein kinase C beta 2 (PKC β2) in myocardial ischaemia-reperfusion injury

Jin, Jiqin, 金冀琴 January 2014 (has links)
abstract / Anaesthesiology / Doctoral / Doctor of Philosophy
9

The protective effect of ascorbate and catechin against myocardial ischemia-reperfusion injury in an isolated rat heart model

2014 September 1900 (has links)
Myocardial ischemia-reperfusion (I/R) injury is an important health concern in myocardial infarction and situations such as angioplasty and cardiac surgeries. Therefore, patients and physicians need therapeutic interventions that are applicable at the time of surgery. Flavonoids and ascorbate (vitamin C) are known for their antioxidant activity and may be involved in the currently known health benefits of plant based foods and drinks. The objectives of this study were to 1) determine the extent to which ascorbate or catechin alone at levels which could be in blood after dietary supplementation, can protect myocardial tissue in the reperfusion phase of I/R injury, and 2) evaluate the possible cooperative or synergistic protective effect of ascorbate and catechin when given together. Isolated rat hearts (n=48) were perfused in the retrograde mode with modified Krebs-Henseleit buffer, and following the induction of 30 min global ischemia, ascorbate (150 µM) and/or catechin (5 µM) were added directly into the perfusate during 90 min reperfusion. To determine the histopathological features, hematoxylin and eosin (H&E) stain was used in one heart per condition; while to assess the biochemical analysis, the heart tissues were assessed for apoptosis (caspase-3 activity), oxidative stress (thiobarbituric acid reactive substances (TBARS) and total malondialdehyde (MDA) levels), and redox status (reduced and oxidized glutathione tissue levels). A comparison of IR hearts with two controls, sham (perfused for a 15 min stabilization period) and continuous perfusion (perfused for 135 min), showed in most but not all measurements that this was a suitable model of IR injury. The treatment experiments showed that 150 µM ascorbate protected the heart against lipid peroxidation and cell apoptosis by 100%, while 5 µM catechin protected by 67% and 90% respectively. No cooperative protective effect could be observed when ascorbate and catechin were used together. None of the treatments significantly affected either reduced or oxidized glutathione levels. In conclusion, this study showed strong protection by ascorbate, which could be used in clinically relevant situations, and is the first to report the protection by catechin at this dose under conditions of myocardial ischemia-reperfusion injury.
10

Investigations into the role of endothelial endothelin-1 on transient focal cerebral ischemia

Leung, Wai-chung, January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Also available in print.

Page generated in 0.1082 seconds