• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 11
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Active-constraint variable ordering schemes for faster feasibility of mixed integer linear programs /

Patel, Jagat, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2002. / Includes bibliographical references (p. 116-119). Also available in electronic format on the Internet.
2

Industrial engineering applications in metrology : job scheduling, calibration interval and average outgoing quality

Al Reeshi, Mohammad Ahmad January 2013 (has links)
This research deals with the optimization of metrology and calibration problems. The optimization involved here is the application scientifically sound operations research techniques to help in solving the problem intended optimally or semi-optimally with a practical time frame. The research starts by exploring the subject of measurement science known as metrology. This involves defining all the constituents of metrology facilities along with their various components. The definitions include the SI units’ history and structure as well as their characteristics. After that, a comprehensive description of most of the operations and parameters encountered in metrology is presented. This involves all sources of uncertainties in most of the parameters that affect the measurements. From the background presented and using all the information within it; an identification of the most important and critical general problems is attempted. In this treatment a number of potential optimization problems are identified along with their description, problem statement definition, impact on the system and possible treatment method. After that, a detailed treatment of the scheduling problem, the calibration interval determination problem and the average outgoing quality problem is presented. The scheduling problem is formulated and modelled as a mixed integer program then solved using LINGO program. A heuristic algorithm is then developed to solve the problem near optimally but in much quicker time, and solution is packaged in a computer program. The calibration interval problem treatment deals with the determination of the optimal CI. Four methods are developed to deal with different cases. The cases considered are the reliability target case, the CI with call cost and failure cost of both first failure and all failures and the case of large number of similar TMDEs. The average out going quality (AOQ) treatment involves the development two methods to assess the AOQ of a calibration facility that uses a certain multistage inspection policy. The two methods are mathematically derived and verified using a simulation model that compares them with an actual failure rate of a virtual calibration facility.
3

Converting some global optimization problems to mixed integer linear problems using piecewise linear approximations

Kumar, Manish, January 2007 (has links) (PDF)
Thesis (M.S.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed December 7, 2007) Includes bibliographical references (p. 28).
4

Optimization model for production and delivery planning in JIT-kanban supply chain systems /

Srisawat Supsomboon. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 71-75).
5

Capacity Pricing in Electric Generation Expansion

Pirnia, Mehrdad January 2009 (has links)
The focus of this thesis is to explore a new mechanism to give added incentive to invest in new capacities in deregulated electricity markets. There is a lot of concern in energy markets, regarding lack of sufficient private sector investment in new capacities to generate electricity. Although some markets are using mechanisms to reward these investments directly, e.g., by governmental subsidies for renewable sources such as wind or solar, there is not much theory to guide the process of setting the reward levels. The proposed mechanism involves a long term planning model, maximizing the social welfare measured as consumers’ plus producers’ surplus, by choosing new generation capacities which, along with still existing capacities, can meet demand. Much previous research in electricity capacity planning has also solved optimization models, usually with continuous variables only, in linear or non-linear programs. However, these approaches can be misleading when capacity additions must either be zero or a large size, e.g., the building of a nuclear reactor or a large wind farm. Therefore, this research includes binary variables for the building of large new facilities in the optimization problem, i.e. the model becomes a mixed integer linear or nonlinear program. It is well known that, when binary variables are included in such a model, the resulting commodity prices may give insufficient incentive for private investment in the optimal new capacities. The new mechanism is intended to overcome this difficulty with a capacity price in addition to the commodity price: an auxiliary mathematical program calculates the minimum capacity price that is necessary to ensure that all firms investing in new capacities are satisfied with their profit levels. In order to test the applicability of this approach, the result of the suggested model is compared with the Ontario Integrated Power System Plan (IPSP), which recommends new generation capacities, based on historical data and costs of different sources of electricity generation for the next 20 years given a fixed forecast of demand.
6

Capacity Pricing in Electric Generation Expansion

Pirnia, Mehrdad January 2009 (has links)
The focus of this thesis is to explore a new mechanism to give added incentive to invest in new capacities in deregulated electricity markets. There is a lot of concern in energy markets, regarding lack of sufficient private sector investment in new capacities to generate electricity. Although some markets are using mechanisms to reward these investments directly, e.g., by governmental subsidies for renewable sources such as wind or solar, there is not much theory to guide the process of setting the reward levels. The proposed mechanism involves a long term planning model, maximizing the social welfare measured as consumers’ plus producers’ surplus, by choosing new generation capacities which, along with still existing capacities, can meet demand. Much previous research in electricity capacity planning has also solved optimization models, usually with continuous variables only, in linear or non-linear programs. However, these approaches can be misleading when capacity additions must either be zero or a large size, e.g., the building of a nuclear reactor or a large wind farm. Therefore, this research includes binary variables for the building of large new facilities in the optimization problem, i.e. the model becomes a mixed integer linear or nonlinear program. It is well known that, when binary variables are included in such a model, the resulting commodity prices may give insufficient incentive for private investment in the optimal new capacities. The new mechanism is intended to overcome this difficulty with a capacity price in addition to the commodity price: an auxiliary mathematical program calculates the minimum capacity price that is necessary to ensure that all firms investing in new capacities are satisfied with their profit levels. In order to test the applicability of this approach, the result of the suggested model is compared with the Ontario Integrated Power System Plan (IPSP), which recommends new generation capacities, based on historical data and costs of different sources of electricity generation for the next 20 years given a fixed forecast of demand.
7

Formulation space search for two-dimensional packing problems

Lopez Soto, Claudia Orquidea January 2013 (has links)
The two-dimension packing problem is concerned with the arrangement of items without overlaps inside a container. In particular we have considered the case when the items are circular objects, some of the general examples that can be found in the industry are related with packing, storing and transportation of circular objects. Although there are several approaches we want to investigate the use of formulation space search. Formulation space search is a fairly recent method that provides an easy way to escape from local optima for non-linear problems allowing to achieve better results. Despite the fact that it has been implemented to solve the packing problem with identical circles, we present an improved implementation of the formulation space search that gives better results for the case of identical and non-identical circles, also considering that they are packed inside different shaped containers, for which we provide the needed modifications for an appropriate implementation. The containers considered are: the unit circle, the unit square, two rectangles with different dimension (length 5, width 1 and length 10 width 1), a right-isosceles triangle, a semicircle and a right-circular quadrant. Results from the tests conducted shown several improvements over the best previously known for the case of identical circles inside three different containers: a right-isosceles triangle, a semicircle and a circular quadrant. In order to extend the scope of the formulation space search approach we used it to solve mixed-integer non-linear problems, in particular those with zero-one variables. Our findings suggest that our implementation provides a competitive way to solve these kind of problems.
8

MODELS AND METHODS IN GENOME WIDE ASSOCIATION STUDIES

Porretta'S, Luciano 26 January 2018 (has links)
The interdisciplinary field of systems biology has evolved rapidly over the last few years. Different disciplines have contributed to the development of both its experimental and theoretical branches.Although computational biology has been an increasing activity in computer science for more than a two decades, it has been only in the past few years that optimization models have been increasingly developed and analyzed by researchers whose primary background is Operations Research(OR). This dissertation aims at contributing to the field of computational biology by applying mathematical programming to certain problems in molecular biology.Specifically, we address three problems in the domain of Genome Wide Association Studies}:(i) the Pure Parsimony Haplotyping Under uncertatind Data Problem that consists in finding the minimum number of haplotypes necessary to explain a given set of genotypes containing possible reading errors; (ii) the Parsimonious Loss Of Heterozygosity Problem that consists of partitioning suspected polymorphisms from a set of individuals into a minimum number of deletion areas; (iii) and the Multiple Individuals Polymorphic Alu Insertion Recognition Problem that consists of finding the set of locations in the genome where ALU sequences are inserted in some individual(s).All three problems are NP-hard combinatorial optimization problems. Therefore, we analyse their combinatorial structure and we propose an exact approach to solution for each of them. The proposed models are efficient, accurate, compact, polynomial-sized and usable in all those cases for which the parsimony criterion is well suited for estimation. / Option Informatique du Doctorat en Sciences / info:eu-repo/semantics/nonPublished
9

Network Topology Optimization with Alternating Current Optimal Power Flow

January 2011 (has links)
abstract: The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the idea of co-optimizing transmission with generation dispatch has not been widely investigated. Network topology optimization exploits the redundancies that are an integral part of the network to allow for improvement in dispatch efficiency. Although, the concept of a dispatchable network initially appears counterintuitive questioning the wisdom of switching transmission lines on a more regu-lar basis, results obtained in the previous research on transmission switching with a Direct Current Optimal Power Flow (DCOPF) show significant cost reductions. This thesis on network topology optimization with ACOPF emphasizes the need for additional research in this area. It examines the performance of network topology optimization in an Alternating Current (AC) setting and its impact on various parameters like active power loss and voltages that are ignored in the DC setting. An ACOPF model, with binary variables representing the status of transmission lines incorporated into the formulation, is written in AMPL, a mathematical programming language and this optimization problem is solved using the solver KNITRO. ACOPF is a non-convex, nonlinear optimization problem, making it a very hard problem to solve. The introduction of bi-nary variables makes ACOPF a mixed integer nonlinear programming problem, further increasing the complexity of the optimization problem. An iterative method of opening each transmission line individually before choosing the best solution has been proposed as a purely investigative approach to studying the impact of transmission switching with ACOPF. Economic savings of up to 6% achieved using this approach indicate the potential of this concept. In addition, a heuristic has been proposed to improve the computational efficiency of network topology optimization. This research also makes a comparative analysis between transmission switching in a DC setting and switching in an AC setting. Results presented in this thesis indicate significant economic savings achieved by controlled topology optimization, thereby reconfirming the need for further examination of this idea. / Dissertation/Thesis / M.S. Electrical Engineering 2011
10

Production optimization for district heating : Short-term planning of district heating grid in Gävle, Sweden

Lindgren, Nicolas, Brogren, Karl January 2019 (has links)
Energy systems with a high portion of renewable energy from wind and solar power can suffer from fluctuations in production due to weak winds or cloudy weather, which may affect the electricity price. When producing heat and power in a combined heat and power plant, an additional heat storage tank can be used to store the heat surplus which is obtained when the power production is high, and the heat demand is low. To optimize heat and power production economically, short-term planning can be applied. Short-term planning covers the production in the near future of 1-3 days. The optimization in this degree project is based on the district heating production, which means that the heating demand always needs to be fulfilled. The district heating production is based on the weather. Therefore a suitable period for simulation is three days due to the accuracy of the weather forecasts are reasonable. The optimization is performed on the district heat system in Gävle, Sweden. The system comprises several different production units, such as combined heat and power plants, backup plants, and industrial waste heat recovery. Two different models are made, one using linear programming and one using mixed integer non-linear programming. The model stated as a linear programming problem is not as accurate as of the one stated as a mixed integer non-linear programming problem which uses binary variables. Historical input data from Bomhus Energi AB, a company owned together by the local heat and power supplier Gävle Energi AB and the pulp and paper manufacturer BillerudKorsnäs AB, was given to simulate different scenarios. The different scenarios have various average temperatures and in some scenarios are there some issues with the pulp and paper industry affecting the waste heat recovery. In all scenarios is the heat storage tank charged when the demand is low and then discharged when the demand increases to avoid starting some of the more expensive backup plants if possible. The simulation time varies a lot between the two approaches, from a couple of seconds to several hours. Particularly when observing scenarios with a rather high demand since the backup generators use binary variables which take a lot of time to solve.

Page generated in 0.1263 seconds