• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On qualitative properties of generalized ODEs / Sobre propriedades qualitativas de EDOs generalizadas

Acuña, Rogelio Grau 13 July 2016 (has links)
In this work, our goal is to prove results on prolongation of solutions, uniform boundedness of solutions, uniform stability as well uniform asymptotic stability (in the classical sense of Lyapunov) for measure differential equations and for dynamic equations on time scales. In order to get our results, we employ the theory of generalized ODEs, since these equations encompass measure differential equations and dynamic equations on time scales. Therefore, to get our results, we start by proving the expected result for abstract generalized ODEs. Then, using the correspondence between the solutions of these equations and the solutions of measure differential equations (see [38]), we extend all the results to these the latter. After that, using the correspondence between the solutions of measure differential equations and the solutions of dynamic equations on time scales (see [21]), we extend all the results to these last equations. Finally, we investigate autonomous generalized ODEs and show that these equations do not enlarge the class of classical autonomous ODEs, even when we consider a more general class of functions as right-hand sides. All the new results presented in this work are contained in papers [16, 17, 18, 19]. / Neste trabalho, nosso objetivo e provar resultados sobre prolongamento de soluções, limitação uniforme de soluções, estabilidade uniforme e estabilidade uniforme assintótica (no sentido clássico de Lyapunov) para equações diferenciais em medida e para equações dinâmicas em escalas temporais. A fim de obter os nossos resultados, empregamos a teoria de EDOs generalizadas, uma vez que estas equações abrangem equações diferenciais em medida e equações dinâmicas em escalas temporais. Portanto, para obter nossos resultados, vamos começar por provar, os resultados que queremos para EDOs generalizadas abstratas. Em seguida, usando a correspondência entre as soluções de EDOs generalizadas e soluções de equações diferenciais em medida (ver [38]), estenderemos os resultados para estas ultimas equações. Depois disso, usando a correspondência entre as soluções de equações diferenciais em medida e as soluções de equações dinâmicas em escalas temporais (ver [21]), estenderemos todos os resultados para estas ultimas equações. Finalmente, investigamos EDOs generalizadas autônomas e mostramos que estas equações não aumentam a classe de EDOs autônomas clássicas, mesmo quando consideramos uma classe mais geral de funções nos lados direitos das equações. Os novos resultados encontrados estão contidos em [16, 17, 18, 19].
2

On qualitative properties of generalized ODEs / Sobre propriedades qualitativas de EDOs generalizadas

Rogelio Grau Acuña 13 July 2016 (has links)
In this work, our goal is to prove results on prolongation of solutions, uniform boundedness of solutions, uniform stability as well uniform asymptotic stability (in the classical sense of Lyapunov) for measure differential equations and for dynamic equations on time scales. In order to get our results, we employ the theory of generalized ODEs, since these equations encompass measure differential equations and dynamic equations on time scales. Therefore, to get our results, we start by proving the expected result for abstract generalized ODEs. Then, using the correspondence between the solutions of these equations and the solutions of measure differential equations (see [38]), we extend all the results to these the latter. After that, using the correspondence between the solutions of measure differential equations and the solutions of dynamic equations on time scales (see [21]), we extend all the results to these last equations. Finally, we investigate autonomous generalized ODEs and show that these equations do not enlarge the class of classical autonomous ODEs, even when we consider a more general class of functions as right-hand sides. All the new results presented in this work are contained in papers [16, 17, 18, 19]. / Neste trabalho, nosso objetivo e provar resultados sobre prolongamento de soluções, limitação uniforme de soluções, estabilidade uniforme e estabilidade uniforme assintótica (no sentido clássico de Lyapunov) para equações diferenciais em medida e para equações dinâmicas em escalas temporais. A fim de obter os nossos resultados, empregamos a teoria de EDOs generalizadas, uma vez que estas equações abrangem equações diferenciais em medida e equações dinâmicas em escalas temporais. Portanto, para obter nossos resultados, vamos começar por provar, os resultados que queremos para EDOs generalizadas abstratas. Em seguida, usando a correspondência entre as soluções de EDOs generalizadas e soluções de equações diferenciais em medida (ver [38]), estenderemos os resultados para estas ultimas equações. Depois disso, usando a correspondência entre as soluções de equações diferenciais em medida e as soluções de equações dinâmicas em escalas temporais (ver [21]), estenderemos todos os resultados para estas ultimas equações. Finalmente, investigamos EDOs generalizadas autônomas e mostramos que estas equações não aumentam a classe de EDOs autônomas clássicas, mesmo quando consideramos uma classe mais geral de funções nos lados direitos das equações. Os novos resultados encontrados estão contidos em [16, 17, 18, 19].

Page generated in 0.3541 seconds