• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CMOS linear RF power amplifier with fully integrated power combining transformer / Um amplificador de potência RFCMOS linear com combinador de potência totalmente integrado

Guimarães, Gabriel Teófilo Neves January 2017 (has links)
Este trabalho apresenta o projeto de um amplificador de potência (PA) de rádio-frequência (RF) linear em tecnologia complementar metal-oxido silício (CMOS). Nele são analisados os desafios encontrados no projeto de PAs CMOS assim como soluções encontradas no estado-da-arte. Um destes desafios apresentados pela tecnologia é a baixa tensão de alimentação e passivos com alta perda, o que limita a potência de saída e a eficiência possível de ser atingida com métodos tradicionais de projeto de PA e suas redes de transformação de impedância. Este problema é solucionado através do uso de redes de combinação de impedância integradas, como a usada neste trabalho chamada transformador combinador em série (SCT). Os problemas com o uso de tecnologia CMOS se tornam ainda mais críticos para padrões de comunicação que requerem alta linearidade como os usados para redes sem-fio locais (WLAN) ou padrões de telefonia móvel 3G e 4G. Tais protocolos requerem que o PA opere em uma potência menor do que seu ponto de operação ótimo, degradando sua eficiência. Técnicas de linearização como pré-distorção digital são usadas para aumentar a potência média transmitida. Uma ténica analógica de compensação de distorção AM-PM através da linearização da capacitância de porta dos transistores é usada neste trabalho. O processo de projeto é detalhado e evidencia as relações de compromisso em cada passo, particularmente o impacto da terminação de harmônicos e a qualidade dos passivos na rede de transformação de carga. O projeto do SCT é otimizado para sintonia da impedância de modo comum que é usada para terminar o segundo harmonico de tensão do amplificador. O amplificador projetado tem um único estágio devido a área do chip ser limitada a 1:57 x 1:57 mm2, fato que impacta seu desempenho. O PA foi analisado através de simulação numérica sob várias métricas. Ele atinge uma potência máxima de saída de 24:4 dBm com uma eficiência de dreno de 24:53% e Eficiência em adição de potência (PAE) de 22%. O PA possui uma curva de ganho plana em toda faixa ISM de 2.4 GHz, com magnitude de 15:8 0:1dB. O PA tem um ponto de compressão de OP1dB = 20:03 dBm e o sinal tem um defasamento não-linear de = 1:2o até esta potência de saída. Um teste de intermodulação de dois tons com potência 3dB abaixo do OP1dB tem como resultado uma relação entre intermodulação de terceira ordem e fundamental de IMD3 = 24:22 dB, e de quinta ordem inferior e superior e fundamental de IMD5Inferior = 48:16 dB e IMD5Superior = 49:8 dB. Por fim, mostra-se que o PA satisfaz os requerimentos para operar no padrão IEEE 802.11g. Ele atinge uma potência média de saída de 15:4 dBm apresentando uma magnitude do vetor erro (EVM) de 5:43%, ou 25:3 dB e satisfazendo a máscara de saída para todos os canais. / This work presents the design of a fully integrated Radio-frequency (RF) linear Power Amplifier( PA) in complementary metal-oxide silicon (CMOS) technology. In this work we analyse the challenges in CMOS PA design as well as the state-of-the-art solutions. One such challenge presented by this technology is the low supply voltage and high-loss passives, which pose severe limits on the output power and efficiency achieved with traditional PA design methods and load impedance transformation networks. This issue is addressed by the use of on-chip, highly efficient power combining networks such as the one in this work: A series combining transformer (SCT). The problem of using CMOS becomes even more critical for recent communications standards that require high transmitter linearity such as the ones used for wireless local area network (WLAN) or 3G and 4G mobile communications. This requirement is such that the PA operate at a high power back-off from its optimum operating point, degrading efficiency. To address this problem linearization techniques such as digital pre-distortion can be used in order to decrease the necessary power back-off. In this work an analog technique of AM-PM distortion compensation is used to linearize the capacitance at the input of the amplifier’s transistors and reduce this type of distortion that severely impacts the error vector magnitude (EVM) of the signal. The design process is detailed and aims to make evident the trade-offs of PA design and particularly the impact of harmonic termination and the quality of passives on the load transformation network, the series combining transformer design is optimized for common-mode impedance tuning used for 2nd harmonic termination. The circuit has only a single amplifying stage due to its area being limited to 1:57 x 1:57 mm2 and the design is very constrained by this fact. The PA simulated performance is analyzed under various metrics. It achieves a simulated maximum output power of 24:4 dBm with a drain efficiency of 24:53% and power added efficiency (PAE) of 22%. The PA has a very flat power gain of 15:8 0:1 dB throughout the 2.4 GHz industrial, scientific and medical (ISM) band and is unconditionally stable with 4:9. The PA has a compression point of OP1dB = 20:03 dBm and the signal has a non-linear phase shift of = 1:2o up to this output power. A two-tone intermodulation test with 3dB back-off from OP1dB has a ratio of third-order intermodulation to fundamental of IMD3 = 24:22 dB, and lower and upper fifth order intermodulation to fundamental of IMD5Lower = 48:16 dB and IMD5Upper = 49:8 dB. Finally the PA is shown to satisfy the requirements for operation within the institute of electrical and electronic engineers (IEEE) 802.11g standard. It achieves an average output power of 15:4 dBm while having an EVM of 5:43% or 25:3 dB while satisfying the output spectrum mask for all channels.
2

CMOS linear RF power amplifier with fully integrated power combining transformer / Um amplificador de potência RFCMOS linear com combinador de potência totalmente integrado

Guimarães, Gabriel Teófilo Neves January 2017 (has links)
Este trabalho apresenta o projeto de um amplificador de potência (PA) de rádio-frequência (RF) linear em tecnologia complementar metal-oxido silício (CMOS). Nele são analisados os desafios encontrados no projeto de PAs CMOS assim como soluções encontradas no estado-da-arte. Um destes desafios apresentados pela tecnologia é a baixa tensão de alimentação e passivos com alta perda, o que limita a potência de saída e a eficiência possível de ser atingida com métodos tradicionais de projeto de PA e suas redes de transformação de impedância. Este problema é solucionado através do uso de redes de combinação de impedância integradas, como a usada neste trabalho chamada transformador combinador em série (SCT). Os problemas com o uso de tecnologia CMOS se tornam ainda mais críticos para padrões de comunicação que requerem alta linearidade como os usados para redes sem-fio locais (WLAN) ou padrões de telefonia móvel 3G e 4G. Tais protocolos requerem que o PA opere em uma potência menor do que seu ponto de operação ótimo, degradando sua eficiência. Técnicas de linearização como pré-distorção digital são usadas para aumentar a potência média transmitida. Uma ténica analógica de compensação de distorção AM-PM através da linearização da capacitância de porta dos transistores é usada neste trabalho. O processo de projeto é detalhado e evidencia as relações de compromisso em cada passo, particularmente o impacto da terminação de harmônicos e a qualidade dos passivos na rede de transformação de carga. O projeto do SCT é otimizado para sintonia da impedância de modo comum que é usada para terminar o segundo harmonico de tensão do amplificador. O amplificador projetado tem um único estágio devido a área do chip ser limitada a 1:57 x 1:57 mm2, fato que impacta seu desempenho. O PA foi analisado através de simulação numérica sob várias métricas. Ele atinge uma potência máxima de saída de 24:4 dBm com uma eficiência de dreno de 24:53% e Eficiência em adição de potência (PAE) de 22%. O PA possui uma curva de ganho plana em toda faixa ISM de 2.4 GHz, com magnitude de 15:8 0:1dB. O PA tem um ponto de compressão de OP1dB = 20:03 dBm e o sinal tem um defasamento não-linear de = 1:2o até esta potência de saída. Um teste de intermodulação de dois tons com potência 3dB abaixo do OP1dB tem como resultado uma relação entre intermodulação de terceira ordem e fundamental de IMD3 = 24:22 dB, e de quinta ordem inferior e superior e fundamental de IMD5Inferior = 48:16 dB e IMD5Superior = 49:8 dB. Por fim, mostra-se que o PA satisfaz os requerimentos para operar no padrão IEEE 802.11g. Ele atinge uma potência média de saída de 15:4 dBm apresentando uma magnitude do vetor erro (EVM) de 5:43%, ou 25:3 dB e satisfazendo a máscara de saída para todos os canais. / This work presents the design of a fully integrated Radio-frequency (RF) linear Power Amplifier( PA) in complementary metal-oxide silicon (CMOS) technology. In this work we analyse the challenges in CMOS PA design as well as the state-of-the-art solutions. One such challenge presented by this technology is the low supply voltage and high-loss passives, which pose severe limits on the output power and efficiency achieved with traditional PA design methods and load impedance transformation networks. This issue is addressed by the use of on-chip, highly efficient power combining networks such as the one in this work: A series combining transformer (SCT). The problem of using CMOS becomes even more critical for recent communications standards that require high transmitter linearity such as the ones used for wireless local area network (WLAN) or 3G and 4G mobile communications. This requirement is such that the PA operate at a high power back-off from its optimum operating point, degrading efficiency. To address this problem linearization techniques such as digital pre-distortion can be used in order to decrease the necessary power back-off. In this work an analog technique of AM-PM distortion compensation is used to linearize the capacitance at the input of the amplifier’s transistors and reduce this type of distortion that severely impacts the error vector magnitude (EVM) of the signal. The design process is detailed and aims to make evident the trade-offs of PA design and particularly the impact of harmonic termination and the quality of passives on the load transformation network, the series combining transformer design is optimized for common-mode impedance tuning used for 2nd harmonic termination. The circuit has only a single amplifying stage due to its area being limited to 1:57 x 1:57 mm2 and the design is very constrained by this fact. The PA simulated performance is analyzed under various metrics. It achieves a simulated maximum output power of 24:4 dBm with a drain efficiency of 24:53% and power added efficiency (PAE) of 22%. The PA has a very flat power gain of 15:8 0:1 dB throughout the 2.4 GHz industrial, scientific and medical (ISM) band and is unconditionally stable with 4:9. The PA has a compression point of OP1dB = 20:03 dBm and the signal has a non-linear phase shift of = 1:2o up to this output power. A two-tone intermodulation test with 3dB back-off from OP1dB has a ratio of third-order intermodulation to fundamental of IMD3 = 24:22 dB, and lower and upper fifth order intermodulation to fundamental of IMD5Lower = 48:16 dB and IMD5Upper = 49:8 dB. Finally the PA is shown to satisfy the requirements for operation within the institute of electrical and electronic engineers (IEEE) 802.11g standard. It achieves an average output power of 15:4 dBm while having an EVM of 5:43% or 25:3 dB while satisfying the output spectrum mask for all channels.
3

CMOS linear RF power amplifier with fully integrated power combining transformer / Um amplificador de potência RFCMOS linear com combinador de potência totalmente integrado

Guimarães, Gabriel Teófilo Neves January 2017 (has links)
Este trabalho apresenta o projeto de um amplificador de potência (PA) de rádio-frequência (RF) linear em tecnologia complementar metal-oxido silício (CMOS). Nele são analisados os desafios encontrados no projeto de PAs CMOS assim como soluções encontradas no estado-da-arte. Um destes desafios apresentados pela tecnologia é a baixa tensão de alimentação e passivos com alta perda, o que limita a potência de saída e a eficiência possível de ser atingida com métodos tradicionais de projeto de PA e suas redes de transformação de impedância. Este problema é solucionado através do uso de redes de combinação de impedância integradas, como a usada neste trabalho chamada transformador combinador em série (SCT). Os problemas com o uso de tecnologia CMOS se tornam ainda mais críticos para padrões de comunicação que requerem alta linearidade como os usados para redes sem-fio locais (WLAN) ou padrões de telefonia móvel 3G e 4G. Tais protocolos requerem que o PA opere em uma potência menor do que seu ponto de operação ótimo, degradando sua eficiência. Técnicas de linearização como pré-distorção digital são usadas para aumentar a potência média transmitida. Uma ténica analógica de compensação de distorção AM-PM através da linearização da capacitância de porta dos transistores é usada neste trabalho. O processo de projeto é detalhado e evidencia as relações de compromisso em cada passo, particularmente o impacto da terminação de harmônicos e a qualidade dos passivos na rede de transformação de carga. O projeto do SCT é otimizado para sintonia da impedância de modo comum que é usada para terminar o segundo harmonico de tensão do amplificador. O amplificador projetado tem um único estágio devido a área do chip ser limitada a 1:57 x 1:57 mm2, fato que impacta seu desempenho. O PA foi analisado através de simulação numérica sob várias métricas. Ele atinge uma potência máxima de saída de 24:4 dBm com uma eficiência de dreno de 24:53% e Eficiência em adição de potência (PAE) de 22%. O PA possui uma curva de ganho plana em toda faixa ISM de 2.4 GHz, com magnitude de 15:8 0:1dB. O PA tem um ponto de compressão de OP1dB = 20:03 dBm e o sinal tem um defasamento não-linear de = 1:2o até esta potência de saída. Um teste de intermodulação de dois tons com potência 3dB abaixo do OP1dB tem como resultado uma relação entre intermodulação de terceira ordem e fundamental de IMD3 = 24:22 dB, e de quinta ordem inferior e superior e fundamental de IMD5Inferior = 48:16 dB e IMD5Superior = 49:8 dB. Por fim, mostra-se que o PA satisfaz os requerimentos para operar no padrão IEEE 802.11g. Ele atinge uma potência média de saída de 15:4 dBm apresentando uma magnitude do vetor erro (EVM) de 5:43%, ou 25:3 dB e satisfazendo a máscara de saída para todos os canais. / This work presents the design of a fully integrated Radio-frequency (RF) linear Power Amplifier( PA) in complementary metal-oxide silicon (CMOS) technology. In this work we analyse the challenges in CMOS PA design as well as the state-of-the-art solutions. One such challenge presented by this technology is the low supply voltage and high-loss passives, which pose severe limits on the output power and efficiency achieved with traditional PA design methods and load impedance transformation networks. This issue is addressed by the use of on-chip, highly efficient power combining networks such as the one in this work: A series combining transformer (SCT). The problem of using CMOS becomes even more critical for recent communications standards that require high transmitter linearity such as the ones used for wireless local area network (WLAN) or 3G and 4G mobile communications. This requirement is such that the PA operate at a high power back-off from its optimum operating point, degrading efficiency. To address this problem linearization techniques such as digital pre-distortion can be used in order to decrease the necessary power back-off. In this work an analog technique of AM-PM distortion compensation is used to linearize the capacitance at the input of the amplifier’s transistors and reduce this type of distortion that severely impacts the error vector magnitude (EVM) of the signal. The design process is detailed and aims to make evident the trade-offs of PA design and particularly the impact of harmonic termination and the quality of passives on the load transformation network, the series combining transformer design is optimized for common-mode impedance tuning used for 2nd harmonic termination. The circuit has only a single amplifying stage due to its area being limited to 1:57 x 1:57 mm2 and the design is very constrained by this fact. The PA simulated performance is analyzed under various metrics. It achieves a simulated maximum output power of 24:4 dBm with a drain efficiency of 24:53% and power added efficiency (PAE) of 22%. The PA has a very flat power gain of 15:8 0:1 dB throughout the 2.4 GHz industrial, scientific and medical (ISM) band and is unconditionally stable with 4:9. The PA has a compression point of OP1dB = 20:03 dBm and the signal has a non-linear phase shift of = 1:2o up to this output power. A two-tone intermodulation test with 3dB back-off from OP1dB has a ratio of third-order intermodulation to fundamental of IMD3 = 24:22 dB, and lower and upper fifth order intermodulation to fundamental of IMD5Lower = 48:16 dB and IMD5Upper = 49:8 dB. Finally the PA is shown to satisfy the requirements for operation within the institute of electrical and electronic engineers (IEEE) 802.11g standard. It achieves an average output power of 15:4 dBm while having an EVM of 5:43% or 25:3 dB while satisfying the output spectrum mask for all channels.
4

Analysis of high-voltage low-current DC/DC converters for electrohydrodynamic pumps

Axelsson, Sigge, Gartner, Jonas, Stafström, Axel January 2023 (has links)
Moving parts cause vibrations and tend to wear out. In applications where maintenance is complicated, solutions without moving parts are therefore advantageous. Electrohydrodynamic pumps are such a solution. Instead of mechanical propulsion, they use strong electric fields to induce movement in a dielectric cooling liquid. These pumps require very little power, but to generate sufficiently strong electric fields, they need to be fed with very high voltage.  This project explored various methods for designing DC/DC-converters which fulfil the demands of an electrohydrodynamic pump. This was done by altering and combining existing topologies that were deemed to be relevant. The main method for testing and evaluation was by simulating in LTspice. The project also briefly investigated methods of overcurrent protection. This was relevant because gas bubbles in the cooling fluid can cause electric arcs which damage the pumps. Three converter topologies were chosen for further evaluation. First, a conventional resonant Royer-based converter that has previously been used by APR Technologies which was altered by the inclusion of a feedback loop. Second, a high-frequency resonant Royer-based converter with a planar air-core transformer. Third, a transformerless converter with a switched boost converter IC. All circuits included a Cockroft-Walton voltage multiplier bridge. The two resonant Royer-based converters fulfilled all requirements except the one on efficiency, while the transformerless converter fulfilled all requirements except the one on cost, set by APR. The more expensive transformerless converter had a significantly higher efficiency and a wider range of acceptable input voltages. Furthermore three general conclusions were drawn. The first was that planar air-core transformers are not beneficial compared to conventional transformers in these type of applications. The second was that a discrete voltage regulator controlled by feedback from the output is more effective than using a voltage regulator without feedback, as it also eliminates temperature and load variations. The third conclusion was that to protect the circuits from overcurrent, a large series resistor is needed, which causes significantly lowered efficiency.

Page generated in 0.1327 seconds